Question 4 of 10

Suppose [tex]$A$[/tex] and [tex]$B$[/tex] are dependent events. If [tex]$P(A \mid B) = 0.25$[/tex] and [tex][tex]$P(B) = 0.4$[/tex][/tex], what is [tex]$P(A \cap B)$[/tex]?

A. 0.15
B. 0.4
C. 0.1
D. 0.45



Answer :

To determine [tex]\( P(A \cap B) \)[/tex], we can use the definition of conditional probability. The conditional probability [tex]\( P(A \mid B) \)[/tex] is given by:

[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]

We are given [tex]\( P(A \mid B) = 0.25 \)[/tex] and [tex]\( P(B) = 0.4 \)[/tex]. We need to find [tex]\( P(A \cap B) \)[/tex].

Rearranging the formula to solve for [tex]\( P(A \cap B) \)[/tex]:

[tex]\[ P(A \cap B) = P(A \mid B) \times P(B) \][/tex]

Substitute the given values:

[tex]\[ P(A \cap B) = 0.25 \times 0.4 \][/tex]

Now, perform the multiplication:

[tex]\[ P(A \cap B) = 0.1 \][/tex]

Thus, the probability [tex]\( P(A \cap B) \)[/tex] is [tex]\( 0.1 \)[/tex].

Therefore, the correct answer is:
C. 0.1