Write [tex]$y=(x-3)^2-25$[/tex] in standard form.

[tex]\[
\begin{array}{l}
y = (x-3)^2 - 25 \\
y = x^2 - 6x + 9 - 25 \\
y = x^2 - 6x - 16
\end{array}
\][/tex]



Answer :

Certainly! Let's write the equation [tex]\( y = (x-3)^2 - 25 \)[/tex] in standard form. We will go through the steps systematically:

1. Expand the squared term:
[tex]\[ (x - 3)^2 \][/tex]
To expand this, we use the formula [tex]\( (a - b)^2 = a^2 - 2ab + b^2 \)[/tex]:
[tex]\[ (x - 3)^2 = x^2 - 6x + 9 \][/tex]

2. Substitute the expanded form back into the original equation:
[tex]\[ y = x^2 - 6x + 9 - 25 \][/tex]

3. Simplify the constants:
[tex]\[ y = x^2 - 6x + 9 - 25 \][/tex]
Combine the constant terms:
[tex]\[ y = x^2 - 6x - 16 \][/tex]

4. Set the equation to zero to get it in standard form:
[tex]\[ x^2 - 6x - 16 = 0 \][/tex]

So, the standard form of the equation [tex]\( y = (x-3)^2 - 25 \)[/tex] is:
[tex]\[ x^2 - 6x - 16 = 0 \][/tex]