The data in the table below were obtained for the reaction:
[tex]\[ A + B \rightarrow C \][/tex]

\begin{tabular}{c|c|c|c}
\begin{tabular}{c}
Experiment \\
Number
\end{tabular} & [A] & [B] & Initial Rate \\
\hline 1 & 0.451 & 0.855 & 1.13 \\
\hline 2 & 0.451 & 1.77 & 1.13 \\
\hline 3 & 1.35 & 0.885 & 10.17 \\
\hline
\end{tabular}

The rate law for this reaction is:

A. [tex]$k[A]^2[B]^2$[/tex]
B. [tex]$k[A]^2[B]$[/tex]
C. [tex]$k[A]^2$[/tex]
D. [tex]$k[P]$[/tex]
E. [tex]$k[A][B]$[/tex]



Answer :

To determine the rate law for the reaction [tex]\( A + B \rightarrow C \)[/tex], we need to carefully analyze the influence of the concentrations of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] on the initial rate of the reaction, using the experimental data provided.

Here is the experimental data again for reference:

[tex]\[ \begin{tabular}{c|c|c|c} \text{Experiment Number} & [A] & [B] & \text{Initial Rate} \\ \hline 1 & 0.451 & 0.855 & 1.13 \\ \hline 2 & 0.451 & 1.77 & 1.13 \\ \hline 3 & 1.35 & 0.885 & 10.17 \\ \hline \end{tabular} \][/tex]

### Step-by-Step Solution:

#### Step 1: Determine the order with respect to [tex]\( B \)[/tex]

- Compare experiments 1 and 2, where the concentration of [tex]\( A \)[/tex] is kept constant while the concentration of [tex]\( B \)[/tex] is varied.
- In experiments 1 and 2:
- [tex]\([A]_1 = [A]_2 = 0.451\)[/tex]
- [tex]\([B]_1 = 0.855\)[/tex], [tex]\([B]_2 = 1.77\)[/tex]
- Initial rates: [tex]\( \text{Rate}_1 = 1.13 \)[/tex], [tex]\( \text{Rate}_2 = 1.13 \)[/tex]

Since the initial rates do not change when the concentration of [tex]\( B \)[/tex] is changed from 0.855 to 1.77, we can conclude that the reaction is zero-order with respect to [tex]\( B \)[/tex].

Rate ratio for [tex]\( B \)[/tex]:
[tex]\[ \frac{\text{Rate}_2}{\text{Rate}_1} = \frac{1.13}{1.13} = 1 \][/tex]

Concentration ratio for [tex]\( B \)[/tex]:
[tex]\[ \left( \frac{[B]_2}{[B]_1} \right)^0 = 1 \quad \text{(since any number to the power of 0 is 1)} \][/tex]

#### Step 2: Determine the order with respect to [tex]\( A \)[/tex]

- Compare experiments 1 and 3, where the concentration of [tex]\( B \)[/tex] is kept constant while the concentration of [tex]\( A \)[/tex] is varied.
- In experiments 1 and 3:
- [tex]\([B]_1 \approx [B]_3 = 0.855 \approx 0.885\)[/tex] (approximately the same)
- [tex]\([A]_1 = 0.451\)[/tex], [tex]\([A]_3 = 1.35\)[/tex]
- Initial rates: [tex]\( \text{Rate}_1 = 1.13 \)[/tex], [tex]\( \text{Rate}_3 = 10.17 \)[/tex]

Rate ratio for [tex]\( A \)[/tex]:
[tex]\[ \frac{\text{Rate}_3}{\text{Rate}_1} = \frac{10.17}{1.13} = 9.0 \][/tex]

Concentration ratio for [tex]\( A \)[/tex]:
[tex]\[ \left( \frac{[A]_3}{[A]_1} \right)^2 = \left( \frac{1.35}{0.451} \right)^2 \approx 8.9601 \][/tex]

Since the rate ratio is approximately the square of the concentration ratio, we conclude that the reaction is second-order with respect to [tex]\( A \)[/tex].

Putting these observations together, the rate law for the given reaction is:

[tex]\[ \text{rate} = k [A]^2 [B]^0 \][/tex]

Since [tex]\([B]^0 = 1\)[/tex], the rate law simplifies to:

[tex]\[ \text{rate} = k [A]^2 \][/tex]

Thus, the correct rate law for the reaction is:

[tex]\[ \boxed{k[A]^2} \][/tex]