Instructions: Determine the number of solutions to the given system. If there is only one solution, type the point in one space and "none" in the other. If there are no solutions, type "none" in both boxes. Use the format [tex]\((x,y)\)[/tex] to type your points, and do not use spaces.

System:
[tex]\[
\left\{
\begin{array}{l}
y = -(x+4)^2 + 3 \\
y = -2x - 3
\end{array}
\right.
\][/tex]

Solution(s): [tex]\(\square\)[/tex] and [tex]\(\square\)[/tex]



Answer :

To determine the number of solutions to the given system of equations and find their specific values, we need to solve the following system:

1. [tex]\( y = -(x + 4)^2 + 3 \)[/tex]
2. [tex]\( y = -2x - 3 \)[/tex]

Let's follow a step-by-step approach to solve these equations systematically.

1. Set the equations equal to each other:
Since both expressions are equal to [tex]\( y \)[/tex], we can equate them to each other:
[tex]\[ -(x + 4)^2 + 3 = -2x - 3 \][/tex]

2. Rewrite and simplify the equation:
[tex]\[ -(x + 4)^2 + 3 = -2x - 3 \][/tex]
Move all terms to one side of the equation to set it to zero:
[tex]\[ -(x + 4)^2 + 3 + 2x + 3 = 0 \][/tex]
Simplify:
[tex]\[ -(x + 4)^2 + 2x + 6 = 0 \][/tex]

3. Expand and further simplify:
Expand [tex]\(-(x + 4)^2\)[/tex] and then simplify:
[tex]\[ -(x^2 + 8x + 16) + 2x + 6 = 0 \][/tex]
Distribute the negative sign:
[tex]\[ -x^2 - 8x - 16 + 2x + 6 = 0 \][/tex]
Combine like terms:
[tex]\[ -x^2 - 6x - 10 = 0 \][/tex]

4. Solve the quadratic equation:
[tex]\[ -x^2 - 6x - 10 = 0 \][/tex]
To solve the quadratic equation, we rearrange and solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = -1 \)[/tex], [tex]\( b = -6 \)[/tex], and [tex]\( c = -10 \)[/tex].

[tex]\[ x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(-1)(-10)}}{2(-1)} \][/tex]
Simplify:
[tex]\[ x = \frac{6 \pm \sqrt{36 - 40}}{-2} \][/tex]
Simplify the expression inside the square root:
[tex]\[ x = \frac{6 \pm \sqrt{-4}}{-2} \][/tex]
Recognize that [tex]\(\sqrt{-4} = 2i\)[/tex] (where [tex]\( i \)[/tex] is the imaginary unit), so:
[tex]\[ x = \frac{6 \pm 2i}{-2} \][/tex]
Split the terms:
[tex]\[ x = -3 \mp i \][/tex]

5. Find corresponding [tex]\( y \)[/tex] values:
Substitute [tex]\( x = -3 - i \)[/tex] and [tex]\( x = -3 + i \)[/tex] into either original equation to find corresponding [tex]\( y \)[/tex] values. Using [tex]\( y = -2x - 3 \)[/tex]:

When [tex]\( x = -3 - i \)[/tex]:
[tex]\[ y = -2(-3 - i) - 3 = 6 + 2i - 3 = 3 + 2i \][/tex]

When [tex]\( x = -3 + i \)[/tex]:
[tex]\[ y = -2(-3 + i) - 3 = 6 - 2i - 3 = 3 - 2i \][/tex]

Thus, the solutions to the system of equations are the points:

[tex]\[ (-3 - i, 3 + 2i) \quad \text{and} \quad (-3 + i, 3 - 2i) \][/tex]

In the specified format, the solutions are:

Solution(s): none and 2 [tex]\( (-3-i,3+2i),(-3+i,3-2i) \)[/tex]