Answer :

Let's simplify the given expression step by step:

[tex]\[ 8 + \{4 - 5 + [-4 - (3 + 5 - 7)] + 8\} + \{6 + 3 - [4 + 5 - (1 + 7) - 27]\} \][/tex]

### Step 1: Simplify innermost parentheses

Start by simplifying the innermost parentheses:

[tex]\[ 3 + 5 - 7 = 1 \][/tex]
and
[tex]\[ 1 + 7 = 8 \][/tex]

### Step 2: Substitute values back into the expression

Substituting these simplified values back into the expression, we get:

[tex]\[ 8 + \{4 - 5 + [-4 - 1] + 8\} + \{6 + 3 - [4 + 5 - 8 - 27]\} \][/tex]

### Step 3: Simplify inside the brackets

Now simplify the terms within the brackets:

[tex]\[ -4 - 1 = -5 \][/tex]

Next:

[tex]\[ 4 + 5 - 8 = 1 \][/tex]
and
[tex]\[ 1 - 27 = -26 \][/tex]

### Step 4: Substitute again

Substituting these results back into the expression, we get:

[tex]\[ 8 + \{4 - 5 - 5 + 8\} + \{6 + 3 + 26\} \][/tex]

### Step 5: Simplify curly braces

Next, simplify the terms within the curly braces:

[tex]\[ 4 - 5 - 5 + 8 = 2 \][/tex]

and

[tex]\[ 6 + 3 + 26 = 35 \][/tex]

### Step 6: Combine all parts

Finally, combine all the parts:

[tex]\[ 8 + 2 + 35 = 45 \][/tex]

So the result of the given expression is:

[tex]\[ \boxed{45} \][/tex]