Select the correct answer.

What is the solution for [tex]$x$[/tex] in the equation?

[tex]
2x - 3x - 18 = -18 + 2x + 5x
[/tex]

A. [tex]$x = 6$[/tex]
B. [tex]$x = 0$[/tex]
C. [tex]$x = -4.5$[/tex]
D. [tex]$x = 4.5$[/tex]



Answer :

Let's solve the given equation step by step:

The equation is:
[tex]\[ 2x - 3x - 18 = -18 + 2x + 5x \][/tex]

1. Combine like terms on both sides of the equation:

On the left side:
[tex]\[ 2x - 3x = -x \][/tex]
So the equation becomes:
[tex]\[ -x - 18 = -18 + 2x + 5x \][/tex]

On the right side:
[tex]\[ 2x + 5x = 7x \][/tex]
So now the equation is:
[tex]\[ -x - 18 = -18 + 7x \][/tex]

2. Add 18 to both sides to simplify:

[tex]\[ -x - 18 + 18 = -18 + 7x + 18 \][/tex]
Simplifying both sides:
[tex]\[ -x = 7x \][/tex]

3. Move all x terms to one side of the equation:

Subtract [tex]\(7x\)[/tex] from both sides:
[tex]\[ -x - 7x = 0 \][/tex]
Simplify:
[tex]\[ -8x = 0 \][/tex]

4. Solve for [tex]\(x\)[/tex]:

Divide both sides by -8:
[tex]\[ x = \frac{0}{-8} \][/tex]
Simplify:
[tex]\[ x = 0 \][/tex]

So, the solution for [tex]\(x\)[/tex] is:
[tex]\[ x = 0 \][/tex]

The correct answer is [tex]\( x = 0 \)[/tex].