\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-4 & -10 \\
\hline
-3 & 0 \\
\hline
-2 & 0 \\
\hline
-1 & -4 \\
\hline
0 & -6 \\
\hline
1 & 0 \\
\hline
\end{tabular}

Which is the [tex]$y$[/tex]-intercept of the continuous function in the table?

A. [tex]$(0, -6)$[/tex]
B. [tex]$(-2, 0)$[/tex]
C. [tex]$(-6, 0)$[/tex]
D. [tex]$(0, -2)$[/tex]



Answer :

To determine the [tex]\( y \)[/tex]-intercept of the continuous function given in the table, we need to examine where the function crosses the [tex]\( y \)[/tex]-axis. The [tex]\( y \)[/tex]-intercept occurs where the [tex]\( x \)[/tex]-value is zero.

Here is the given table:

[tex]\[ \begin{tabular}{|c|c|} \hline x & f(x) \\ \hline -4 & -10 \\ \hline -3 & 0 \\ \hline -2 & 0 \\ \hline -1 & -4 \\ \hline 0 & -6 \\ \hline 1 & 0 \\ \hline \end{tabular} \][/tex]

From the table, we observe that the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 0 \)[/tex] is -6.

As a result:
- The coordinates of the [tex]\( y \)[/tex]-intercept are [tex]\((0, -6)\)[/tex].

Thus, the [tex]\( y \)[/tex]-intercept of the continuous function in the table is [tex]\((0, -6)\)[/tex].