Select the correct answer.

The steps for solving the given equation are shown below.
[tex]8 - 3x = 20[/tex]

\begin{tabular}{|r|r|ll|}
\hline \multicolumn{2}{|c|}{Steps} & & \multicolumn{2}{c|}{Justifications} \\
\hline [tex]8 - 3x - 8 = 20 - 8[/tex] & 1. Subtraction property of equality \\
[tex]-3x = 12[/tex] & 2. Simplification \\
??? & 3. Multiplication property of equality \\
[tex]x = -4[/tex] & 4. Simplification \\
\hline
\end{tabular}

Select the correct equation for the missing step in the table.

A. [tex]-3x \cdot \left( -\frac{1}{3} \right) = 12 \cdot \left( -\frac{1}{3} \right)[/tex]

B. [tex]-3x \cdot 3 = 12 \cdot 3[/tex]

C. [tex]-3x \cdot (-3) = 12 \cdot (-3)[/tex]

D. [tex]-3x \cdot \frac{1}{12} = 12 \cdot \frac{1}{12}[/tex]



Answer :

Let's go through the provided steps for solving the equation [tex]\(8 - 3x = 20\)[/tex] and identify the missing step.

Step 1: [tex]\(8 - 3x - 8 = 20 - 8\)[/tex]

Justification: Subtraction property of equality.

Here, we subtract 8 from both sides of the equation to isolate the term involving [tex]\(x\)[/tex].

Step 2: [tex]\(-3x = 12\)[/tex]

Justification: Simplification.

Simplifying both sides of the equation, we get [tex]\(-3x = 12\)[/tex].

Now, we need to isolate [tex]\(x\)[/tex]. To do so, we need to divide both sides by the coefficient of [tex]\(x\)[/tex], which is [tex]\(-3\)[/tex].

The possible equations for the missing step (Step 3) are:

1. [tex]\(-3x \cdot \left(-\frac{1}{3}\right) = 12 \cdot \left(-\frac{1}{3}\right)\)[/tex]
2. [tex]\(-3x \cdot 3 = 12 \cdot 3\)[/tex]
3. [tex]\(-3x \cdot (-3) = 12 \cdot (-3)\)[/tex]
4. [tex]\(-3x \cdot \frac{1}{12} = 12 \cdot \frac{1}{12}\)[/tex]

Let's analyze:

- [tex]\(-3x \cdot \left(-\frac{1}{3}\right) = 12 \cdot \left(-\frac{1}{3}\right)\)[/tex]

Multiplying both sides by [tex]\(-\frac{1}{3}\)[/tex] effectively divides by [tex]\(-3\)[/tex], isolating [tex]\(x\)[/tex]:

[tex]\[ -3x \cdot \left(-\frac{1}{3}\right) = 12 \cdot \left(-\frac{1}{3}\right) \][/tex]

- [tex]\(-3x \cdot 3 = 12 \cdot 3\)[/tex]

Multiplying by [tex]\(3\)[/tex] instead of dividing by [tex]\(-3\)[/tex] does not isolate [tex]\(x\)[/tex].

- [tex]\(-3x \cdot (-3) = 12 \cdot (-3)\)[/tex]

Multiplying by [tex]\(-3\)[/tex] instead of dividing by [tex]\(-3\)[/tex] does not isolate [tex]\(x\)[/tex].

- [tex]\(-3x \cdot \frac{1}{12} = 12 \cdot \frac{1}{12}\)[/tex]

Multiplying both sides by [tex]\(\frac{1}{12}\)[/tex] does not isolate [tex]\(x\)[/tex] as it’s not equivalent to dividing by [tex]\(-3\)[/tex].

Thus, the correct missing step is:

[tex]\[ -3x \cdot \left(-\frac{1}{3}\right) = 12 \cdot \left(-\frac{1}{3}\right) \][/tex]

Hence, the correct answer to the question is:

[tex]\[ -3x \cdot \left(-\frac{1}{3}\right) = 12 \cdot \left(-\frac{1}{3}\right) \][/tex]