3. If [tex]$\vec{a} + \vec{b}$[/tex] is perpendicular to [tex]$\vec{a}$[/tex] and [tex]$(2 \vec{a} + \vec{b})$[/tex] is perpendicular to [tex][tex]$\vec{b}$[/tex][/tex], then [tex]$\frac{|\vec{b}|}{|\vec{a}|}$[/tex] is:

---

Note: The task appears to be complete as it is a valid question about vector relationships. The formatting is made clearer and consistent.



Answer :

Given two vectors [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex], we are told that:
1. [tex]\(\vec{a} + \vec{b}\)[/tex] is perpendicular to [tex]\(\vec{a}\)[/tex].
2. [tex]\(2\vec{a} + \vec{b}\)[/tex] is perpendicular to [tex]\(\vec{b}\)[/tex].

We need to find the ratio [tex]\(\frac{|\vec{b}|}{|\vec{a}|}\)[/tex].

1. Step 1: Express the perpendicularity condition for [tex]\(\vec{a} + \vec{b}\)[/tex] with [tex]\(\vec{a}\)[/tex].

If two vectors are perpendicular, their dot product is zero. Therefore,
[tex]\[ (\vec{a} + \vec{b}) \cdot \vec{a} = 0 \][/tex]
Expanding this using the distributive property of the dot product:
[tex]\[ \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} = 0 \][/tex]
We know that [tex]\(\vec{a} \cdot \vec{a} = |\vec{a}|^2\)[/tex] (since the dot product of a vector with itself is the square of its magnitude):
[tex]\[ |\vec{a}|^2 + \vec{b} \cdot \vec{a} = 0 \tag{1} \][/tex]

2. Step 2: Express the perpendicularity condition for [tex]\(2\vec{a} + \vec{b}\)[/tex] with [tex]\(\vec{b}\)[/tex].

If [tex]\(2\vec{a} + \vec{b}\)[/tex] is perpendicular to [tex]\(\vec{b}\)[/tex], their dot product is zero:
[tex]\[ (2\vec{a} + \vec{b}) \cdot \vec{b} = 0 \][/tex]
Expanding this:
[tex]\[ 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 0 \][/tex]
We know that [tex]\(\vec{b} \cdot \vec{b} = |\vec{b}|^2\)[/tex]:
[tex]\[ 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = 0 \tag{2} \][/tex]

3. Step 3: Solve the system of equations derived from the dot products.

- From equation (1):
[tex]\[ |\vec{a}|^2 + \vec{a} \cdot \vec{b} = 0 \][/tex]
Solving for [tex]\(\vec{a} \cdot \vec{b}\)[/tex]:
[tex]\[ \vec{a} \cdot \vec{b} = -|\vec{a}|^2 \tag{3} \][/tex]

- From equation (2):
[tex]\[ 2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2 = 0 \][/tex]
Substitute [tex]\(\vec{a} \cdot \vec{b}\)[/tex] from equation (3):
[tex]\[ 2(-|\vec{a}|^2) + |\vec{b}|^2 = 0 \][/tex]
Simplify this:
[tex]\[ -2|\vec{a}|^2 + |\vec{b}|^2 = 0 \][/tex]
[tex]\[ |\vec{b}|^2 = 2|\vec{a}|^2 \][/tex]
Taking the square root of both sides:
[tex]\[ |\vec{b}| = \sqrt{2} |\vec{a}| \][/tex]

4. Step 4: Calculate the desired ratio.

The ratio [tex]\(\frac{|\vec{b}|}{|\vec{a}|}\)[/tex] is:
[tex]\[ \frac{|\vec{b}|}{|\vec{a}|} = \frac{\sqrt{2} |\vec{a}|}{|\vec{a}|} = \sqrt{2} \][/tex]

Therefore, the ratio [tex]\(\frac{|\vec{b}|}{|\vec{a}|}\)[/tex] is [tex]\(\boxed{\sqrt{2}}\)[/tex].