What is the following quotient?

[tex]\[
\frac{\sqrt{6}+\sqrt{11}}{\sqrt{5}+\sqrt{3}}
\][/tex]

A. [tex]\(\frac{\sqrt{30}+3\sqrt{2}+\sqrt{55}+\sqrt{33}}{8}\)[/tex]

B. [tex]\(\frac{\sqrt{30}-3\sqrt{2}+\sqrt{55}-\sqrt{33}}{2}\)[/tex]

C. [tex]\(\frac{17}{8}\)[/tex]

D. [tex]\(-\frac{5}{2}\)[/tex]



Answer :

To determine which of the given expressions matches the quotient [tex]\(\frac{\sqrt{6}+\sqrt{11}}{\sqrt{5}+\sqrt{3}}\)[/tex], let's evaluate the numerical value of each option.

First, let's denote the numerator and the denominator of the original expression:
1. Numerator: [tex]\(\sqrt{6} + \sqrt{11}\)[/tex]
2. Denominator: [tex]\(\sqrt{5} + \sqrt{3}\)[/tex]

Evaluating the quotient, we find:
[tex]\[ \frac{\sqrt{6} + \sqrt{11}}{\sqrt{5} + \sqrt{3}} \approx 1.4531 \][/tex]

Now, we will consider each of the given options:

1. [tex]\(\frac{\sqrt{30} + 3 \sqrt{2} + \sqrt{55} + \sqrt{33}}{8}\)[/tex]

Evaluate the numerator:
[tex]\[ \sqrt{30} + 3\sqrt{2} + \sqrt{55} + \sqrt{33} \approx 5.4772 + 4.2426 + 7.4162 + 5.7446 \approx 22.8806 \][/tex]

Then, the overall expression is:
[tex]\[ \frac{22.8806}{8} \approx 2.8601 \][/tex]

2. [tex]\(\frac{\sqrt{30} - 3 \sqrt{2} + \sqrt{55} - \sqrt{33}}{2}\)[/tex]

Evaluate the numerator:
[tex]\[ \sqrt{30} - 3\sqrt{2} + \sqrt{55} - \sqrt{33} \approx 5.4772 - 4.2426 + 7.4162 - 5.7446 \approx 2.9062 \][/tex]

Then, the overall expression is:
[tex]\[ \frac{2.9062}{2} \approx 1.4531 \][/tex]

3. [tex]\(\frac{17}{8}\)[/tex]

Evaluate the expression directly:
[tex]\[ \frac{17}{8} = 2.125 \][/tex]

4. [tex]\(-\frac{5}{2}\)[/tex]

Evaluate the expression directly:
[tex]\[ -\frac{5}{2} = -2.5 \][/tex]

Comparing these values:

- Original quotient: [tex]\(1.4531\)[/tex]
- Option 1: [tex]\(2.8601\)[/tex]
- Option 2: [tex]\(1.4531\)[/tex]
- Option 3: [tex]\(2.125\)[/tex]
- Option 4: [tex]\(-2.5\)[/tex]

The correct choice that matches the value of the quotient [tex]\(\frac{\sqrt{6}+\sqrt{11}}{\sqrt{5}+\sqrt{3}}\)[/tex] is:
[tex]\[ \boxed{\frac{\sqrt{30} - 3 \sqrt{2} + \sqrt{55} - \sqrt{33}}{2}} \][/tex]