Hypotheses for a chi-square goodness-of-fit test are given, along with the observed and expected counts. Calculate the chi-square statistic for this test.

Hypotheses:
[tex]\[ H_0: p_A=0.3, p_B=0.3, p_C=0.4 \][/tex]
[tex]\[ H_a: \text{Some } p_i \text{ is not as given} \][/tex]

Sample Data:
[tex]\[
\begin{tabular}{|l|ccc|}
\hline & A & B & C \\
\hline Observed (Expected) & 29 (36.9) & 49 (36.9) & 45 (49.2) \\
\hline
\end{tabular}
\][/tex]

Round your answer to one decimal place.
[tex]\[ \chi^2 = \square \][/tex]



Answer :

Sure, let's calculate the chi-square statistic for this goodness-of-fit test step-by-step using the given observed and expected counts.

1. Given Data:
- Observed counts ([tex]\(O\)[/tex]):
- [tex]\(O_A = 29\)[/tex]
- [tex]\(O_B = 49\)[/tex]
- [tex]\(O_C = 45\)[/tex]

- Expected counts ([tex]\(E\)[/tex]):
- [tex]\(E_A = 36.9\)[/tex]
- [tex]\(E_B = 36.9\)[/tex]
- [tex]\(E_C = 49.2\)[/tex]

2. Formula for Chi-square Statistic:
The formula for the chi-square statistic is:
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
where [tex]\(O_i\)[/tex] is the observed count, [tex]\(E_i\)[/tex] is the expected count, and the sum is over all categories.

3. Calculate Individual Components:
- For category A:
[tex]\[ \chi^2_A = \frac{(O_A - E_A)^2}{E_A} = \frac{(29 - 36.9)^2}{36.9} \approx 1.6913 \][/tex]

- For category B:
[tex]\[ \chi^2_B = \frac{(O_B - E_B)^2}{E_B} = \frac{(49 - 36.9)^2}{36.9} \approx 3.9678 \][/tex]

- For category C:
[tex]\[ \chi^2_C = \frac{(O_C - E_C)^2}{E_C} = \frac{(45 - 49.2)^2}{49.2} \approx 0.3585 \][/tex]

4. Sum the Contributions:
[tex]\[ \chi^2 = \chi^2_A + \chi^2_B + \chi^2_C = 1.6913 + 3.9678 + 0.3585 \approx 6.0176 \][/tex]

5. Round the Result:
The chi-square statistic rounded to one decimal place is:
[tex]\[ \chi^2 \approx 6.0 \][/tex]

So, the chi-square statistic for this test is [tex]\(\chi^2 = 6.0\)[/tex].