If [tex]JM = 5x - 8[/tex] and [tex]LM = 2x - 6[/tex], which expression represents [tex]JL[/tex]?

A. [tex]3x - 2[/tex]
B. [tex]3x - 14[/tex]
C. [tex]7x - 2[/tex]
D. [tex]7x - 14[/tex]



Answer :

To determine the expression for [tex]\(JL\)[/tex] given [tex]\(JM = 5x - 8\)[/tex] and [tex]\(LM = 2x - 6\)[/tex], we need to add the expressions for [tex]\(JM\)[/tex] and [tex]\(LM\)[/tex].

Here is the step-by-step process:

1. Start with the given expressions:
[tex]\[ JM = 5x - 8 \][/tex]
[tex]\[ LM = 2x - 6 \][/tex]

2. Add the two expressions together to find [tex]\(JL\)[/tex]:
[tex]\[ JL = JM + LM \][/tex]
[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

3. Combine like terms:
[tex]\[ JL = 5x + 2x - 8 - 6 \][/tex]
[tex]\[ JL = 7x - 14 \][/tex]

Hence, the expression that represents [tex]\(JL\)[/tex] is:
[tex]\[ 7x - 14 \][/tex]

Therefore, the correct option is:
[tex]\[ \boxed{7 x - 14} \][/tex]