Match the expression on the left with its simplified form on the right. Answer options on the right may be used more than once.

\begin{tabular}{ll}
[tex]$(-5)$[/tex] & -5 \\
[tex]$|-5|$[/tex] & 5 \\
[tex]$|5|$[/tex] & 5 \\
[tex]$-|-5|$[/tex] & -5 \\
\end{tabular}



Answer :

Alright, let's match each expression on the left with its simplified form on the right.

1. Expression: [tex]\(-5\)[/tex]
- Simplified Form: [tex]\(-5\)[/tex]
- Here, the expression [tex]\(-5\)[/tex] is already simplified and equals [tex]\(-5\)[/tex].

2. Expression: [tex]\(|-5|\)[/tex]
- Simplified Form: 5
- The absolute value of [tex]\(-5\)[/tex] removes the negative sign, hence [tex]\(|-5| = 5\)[/tex].

3. Expression: [tex]\(|5|\)[/tex]
- Simplified Form: 5
- The absolute value of 5 remains 5 as it is already positive, hence [tex]\(|5| = 5\)[/tex].

4. Expression: [tex]\(-|151|\)[/tex]
- Simplified Form: [tex]\(-151\)[/tex]
- The absolute value of 151 removes any sign, leaving 151, then adding a negative sign gives us [tex]\(-|151| = -151\)[/tex].

5. Expression: [tex]\(-|-5|\)[/tex]
- Simplified Form: [tex]\(-5\)[/tex]
- The absolute value of [tex]\(-5\)[/tex] is 5, and then applying the negative sign gives us [tex]\(-|-5| = -5\)[/tex].

Now, let's summarize the matches:

1. [tex]\((-5) \rightarrow -5\)[/tex]
2. [tex]\(|-5| \rightarrow 5\)[/tex]
3. [tex]\(|5| \rightarrow 5\)[/tex]
4. [tex]\(-|151| \rightarrow -151\)[/tex]
5. [tex]\(-|-5| \rightarrow -5\)[/tex]

So, the final matched pairs are:
[tex]\[ ((-5, -5), (5, 5), (5, 5), (-151, -151), (-5, -5)) \][/tex]