Perform the indicated operation of multiplication or division on the rational expressions and simplify.

[tex]\[ \frac{8t^2}{5s} \cdot \frac{15s}{4t} \][/tex]



Answer :

To solve the problem of multiplying the rational expressions and simplifying, let's break it down step by step:

Given:
[tex]\[ \frac{8 t^2}{5 s} \cdot \frac{15 s}{4 t} \][/tex]

### Step 1: Multiply the numerators
First, we multiply the numerators of the two fractions:
[tex]\[ 8 t^2 \cdot 15 s = 8 \cdot 15 \cdot t^2 \cdot s = 120 t^2 s \][/tex]

### Step 2: Multiply the denominators
Next, we multiply the denominators of the two fractions:
[tex]\[ 5 s \cdot 4 t = 5 \cdot 4 \cdot s \cdot t = 20 st \][/tex]

So, the product of the rational expressions before simplification is:
[tex]\[ \frac{120 t^2 s}{20 st} \][/tex]

### Step 3: Simplify the expression
To simplify the fraction, we need to cancel out common factors in the numerator and the denominator.

1. Numerical coefficients: The numerical part of the fraction is [tex]\(\frac{120}{20}\)[/tex]:
[tex]\[ \frac{120}{20} = 6 \][/tex]

2. Variable [tex]\(t\)[/tex]: In the numerator, we have [tex]\(t^2\)[/tex] and in the denominator, we have [tex]\(t\)[/tex]. So, [tex]\(t^2 / t = t\)[/tex]:
[tex]\[ t^2 / t = t \][/tex]

3. Variable [tex]\(s\)[/tex]: In both the numerator and the denominator, we have [tex]\(s\)[/tex], which cancels out:
[tex]\[ s / s = 1 \][/tex]

So, the simplified form of the product is:
[tex]\[ \frac{120 t^2 s}{20 st} = 6t \][/tex]

### Conclusion
Thus, the simplified form of the given multiplication of rational expressions [tex]\(\frac{8 t^2}{5 s} \cdot \frac{15 s}{4 t}\)[/tex] is:
[tex]\[ 6t \][/tex]

We have carefully multiplied and simplified the expressions step by step to arrive at this result.