Sulfur reacts with oxygen to form sulfur dioxide [tex] \left( SO _2(g), \Delta H_{ f }=-296.8 \, \text{kJ/mol} \right) [/tex] according to the equation below.

[tex]\[ S (s) + O_2(g) \rightarrow SO_2(g) \][/tex]

What is the enthalpy change for the reaction?
Use [tex] \Delta H_{rxn} = \sum \left( \Delta H_{f, \text{products}} \right) - \sum \left( \Delta H_{f, \text{reactants}} \right) [/tex].

A. -593.6 kJ
B. -296.8 kJ
C. 296.8 kJ
D. 593.6 kJ



Answer :

To determine the enthalpy change (ΔH[tex]\(_{rxn}\)[/tex]) for the reaction:

[tex]\[ S(s) + O_2(g) \rightarrow SO_2(g) \][/tex]

we use the formula for the enthalpy change of a reaction, which is given by:

[tex]\[ \Delta H_{rxn} = \sum (\Delta H_{f, \text{products}}) - \sum (\Delta H_{f, \text{reactants}}) \][/tex]

Here,
- [tex]\(\Delta H_{f, \text{products}}\)[/tex] is the enthalpy of formation of the product(s)
- [tex]\(\Delta H_{f, \text{reactants}}\)[/tex] is the enthalpy of formation of the reactant(s)

Let's list the enthalpy of formation values:
- Enthalpy of formation for sulfur dioxide (SO[tex]\(_2\)[/tex]): [tex]\(\Delta H_f = -296.8 \ \text{kJ/mol}\)[/tex]
- Enthalpy of formation for elemental sulfur (S): [tex]\(\Delta H_f = 0 \ \text{kJ/mol}\)[/tex] (by definition, the enthalpy of formation of an element in its standard state is zero)
- Enthalpy of formation for elemental oxygen (O[tex]\(_2\)[/tex]): [tex]\(\Delta H_f = 0 \ \text{kJ/mol}\)[/tex] (similarly, the enthalpy of formation of an element in its standard state is zero)

Applying these values in the formula, we have:

[tex]\[ \Delta H_{rxn} = \left( \Delta H_{f, SO_2} \right) - \left( \Delta H_{f, S} + \Delta H_{f, O_2} \right) \][/tex]

Substitute the known values:

[tex]\[ \Delta H_{rxn} = (-296.8) \ \text{kJ/mol} - (0 \ \text{kJ/mol} + 0 \ \text{kJ/mol}) \][/tex]

[tex]\[ \Delta H_{rxn} = -296.8 \ \text{kJ/mol} \][/tex]

Hence, the enthalpy change for the reaction is [tex]\(-296.8 \ \text{kJ/mol}\)[/tex].

So, the correct answer is:

[tex]\[ -296.8 \ \text{kJ} \][/tex]