1. Manganese dioxide [tex]$\left( \text{MnO}_2(s), \Delta H_f=-520.0 \text{ kJ} \right)$[/tex] reacts with aluminum to form aluminum oxide [tex]$\left( \text{Al}_2 \text{O}_3(s), \Delta H_f = -1699.8 \text{ kJ/mol} \right)$[/tex] and manganese according to the equation below.

[tex]\[ 3 \text{MnO}_2(s) + 4 \text{Al}(s) \rightarrow 2 \text{Al}_2 \text{O}_3(s) + 3 \text{Mn}(s) \][/tex]

What is the enthalpy of the reaction?

Use [tex]$\Delta H_{\text{rxn}} = \sum \left( \Delta H_{f,\text{products}} \right) - \sum \left( \Delta H_{f,\text{reactants}} \right)$[/tex].

A. [tex]$-1,839.6 \text{ kJ}$[/tex]
B. [tex]$-1,179.8 \text{ kJ}$[/tex]
C. [tex]$1,179.8 \text{ kJ}$[/tex]
D. [tex]$1,839.6 \text{ kJ}$[/tex]



Answer :

To solve this problem, we need to determine the enthalpy change of the reaction using the standard enthalpies of formation ([tex]\(\Delta H_f\)[/tex]) provided for the substances involved.

The given balanced chemical equation is:
[tex]\[ 3 MnO_2(s) + 4 Al(s) \rightarrow 2 Al_2O_3(s) + 3 Mn(s) \][/tex]

The standard enthalpies of formation for the reactants and products are:
[tex]\[ \Delta H_f(MnO_2(s)) = -520.0\, \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f(Al_2O_3(s)) = -1699.8\, \text{kJ/mol} \][/tex]

Step 1: Calculate the sum of the enthalpies of formation for the reactants:

- For [tex]\(MnO_2\)[/tex], there are 3 moles involved:
[tex]\[ 3 \times (-520.0\, \text{kJ/mol}) = -1560.0\, \text{kJ} \][/tex]

- For aluminum (Al), since it is in its elemental form, its standard enthalpy of formation is zero. Therefore, it does not contribute to the enthalpy change:
[tex]\[ 4 \times 0\, \text{kJ/mol} = 0\, \text{kJ} \][/tex]

Summing up the enthalpies of the reactants:
[tex]\[ \sum H_f(\text{reactants}) = -1560.0\, \text{kJ} \][/tex]

Step 2: Calculate the sum of the enthalpies of formation for the products:

- For [tex]\(Al_2O_3\)[/tex], there are 2 moles involved:
[tex]\[ 2 \times (-1699.8\, \text{kJ/mol}) = -3399.6\, \text{kJ} \][/tex]

- For manganese (Mn), it is also in its elemental form, so its standard enthalpy of formation is zero:
[tex]\[ 3 \times 0\, \text{kJ/mol} = 0\, \text{kJ} \][/tex]

Summing up the enthalpies of the products:
[tex]\[ \sum H_f(\text{products}) = -3399.6\, \text{kJ} \][/tex]

Step 3: Calculate the enthalpy change of the reaction:

The enthalpy change ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) can be found using the formula:
[tex]\[ \Delta H_{\text{reaction}} = \sum H_f(\text{products}) - \sum H_f(\text{reactants}) \][/tex]

Substituting in our values:
[tex]\[ \Delta H_{\text{reaction}} = -3399.6\, \text{kJ} - (-1560.0\, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -3399.6 + 1560.0\, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -1839.6\, \text{kJ} \][/tex]

Therefore, the enthalpy change for the reaction is:
[tex]\[ -1839.6\, \text{kJ} \][/tex]

Answer:
[tex]\(-1839.6\, \text{kJ}\)[/tex]

So the correct choice is:
[tex]\[ \boxed{-1839.6\, \text{kJ}} \][/tex]