Solve the compound inequality for [tex]x[/tex]:

[tex]\[ 5 \leq x+2 \leq 7 \][/tex]

Select one:
A. [tex]\[14 \leq x \leq 10\][/tex]
B. [tex]\[7 \leq x \leq 9\][/tex]
C. [tex]\[\frac{5}{2} \leq x \leq \frac{7}{2}\][/tex]
D. [tex]\[3 \leq x \leq 5\][/tex]



Answer :

To solve the compound inequality [tex]\( 5 \leq x+2 \leq 7 \)[/tex], we need to isolate the variable [tex]\( x \)[/tex]. Here are the steps to do that:

1. Start with the given compound inequality:
[tex]\[ 5 \leq x+2 \leq 7 \][/tex]

2. To isolate [tex]\( x \)[/tex], we need to subtract 2 from each part of the inequality:
[tex]\[ 5 - 2 \leq x + 2 - 2 \leq 7 - 2 \][/tex]

3. Simplifying each part, we get:
[tex]\[ 3 \leq x \leq 5 \][/tex]

Thus, the solution to the compound inequality [tex]\( 5 \leq x+2 \leq 7 \)[/tex] is [tex]\( 3 \leq x \leq 5 \)[/tex].

Therefore, the correct choice is:

d. [tex]\( 3 \leq x \leq 5 \)[/tex]