Solve for [tex]\( x \)[/tex]:

[tex]\[ 3x = 6x - 2 \][/tex]



Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
Solutions:
[tex]$
y=-\frac{1}{2} x+1
$[/tex]

Solutions:
[tex]$(-2,2)$[/tex]
[tex]$(4,-1)$[/tex]
[tex]$(0,4)$[/tex]
[tex]$(0,1)$[/tex]
[tex]$(-1,1)$[/tex]
[tex]$(-2,-2)$[/tex]
-----

Response:
Determine which of the following points are solutions to the equation:

[tex]\[ y = -\frac{1}{2}x + 1 \][/tex]

Points:
[tex]\[ (-2, 2) \][/tex]
[tex]\[ (4, -1) \][/tex]
[tex]\[ (0, 4) \][/tex]
[tex]\[ (0, 1) \][/tex]
[tex]\[ (-1, 1) \][/tex]
[tex]\[ (-2, -2) \][/tex]



Answer :

Sure! Let's determine which of these given points satisfy the given linear equation [tex]\(y = -\frac{1}{2}x + 1\)[/tex]. We will substitute each [tex]\((x, y)\)[/tex] pair into the equation to see if the equality holds true.

1. For the point [tex]\((-2, 2)\)[/tex]:

Substitute [tex]\(x = -2\)[/tex] into the equation:
[tex]\[ y = -\frac{1}{2}(-2) + 1 \][/tex]

Simplifying this, we get:
[tex]\[ y = 1 + 1 = 2 \][/tex]

Since the left-hand side [tex]\(y = 2\)[/tex] matches the right-hand side, the point [tex]\((-2, 2)\)[/tex] is a solution to the equation.

2. For the point [tex]\((4, -1)\)[/tex]:

Substitute [tex]\(x = 4\)[/tex] into the equation:
[tex]\[ y = -\frac{1}{2}(4) + 1 \][/tex]

Simplifying this, we get:
[tex]\[ y = -2 + 1 = -1 \][/tex]

Since the left-hand side [tex]\(y = -1\)[/tex] matches the right-hand side, the point [tex]\((4, -1)\)[/tex] is a solution to the equation.

3. For the point [tex]\((0, 4)\)[/tex]:

Substitute [tex]\(x = 0\)[/tex] into the equation:
[tex]\[ y = -\frac{1}{2}(0) + 1 \][/tex]

Simplifying this, we get:
[tex]\[ y = 0 + 1 = 1 \][/tex]

Since the left-hand side [tex]\(y = 4\)[/tex] does not match the right-hand side, the point [tex]\((0, 4)\)[/tex] is not a solution to the equation.

4. For the point [tex]\((0, 1)\)[/tex]:

Substitute [tex]\(x = 0\)[/tex] into the equation:
[tex]\[ y = -\frac{1}{2}(0) + 1 \][/tex]

Simplifying this, we get:
[tex]\[ y = 0 + 1 = 1 \][/tex]

Since the left-hand side [tex]\(y = 1\)[/tex] matches the right-hand side, the point [tex]\((0, 1)\)[/tex] is a solution to the equation.

5. For the point [tex]\((-1, 1)\)[/tex]:

Substitute [tex]\(x = -1\)[/tex] into the equation:
[tex]\[ y = -\frac{1}{2}(-1) + 1 \][/tex]

Simplifying this, we get:
[tex]\[ y = \frac{1}{2} + 1 = \frac{3}{2} \][/tex]

Since the left-hand side [tex]\(y = 1\)[/tex] does not match the right-hand side, the point [tex]\((-1, 1)\)[/tex] is not a solution to the equation.

6. For the point [tex]\((-2, -2)\)[/tex]:

Substitute [tex]\(x = -2\)[/tex] into the equation:
[tex]\[ y = -\frac{1}{2}(-2) + 1 \][/tex]

Simplifying this, we get:
[tex]\[ y = 1 + 1 = 2 \][/tex]

Since the left-hand side [tex]\(y = -2\)[/tex] does not match the right-hand side, the point [tex]\((-2, -2)\)[/tex] is not a solution to the equation.

After checking all the points, the points that satisfy the equation [tex]\(y = -\frac{1}{2}x + 1\)[/tex] are:
[tex]\[ (-2, 2), (4, -1), (0, 1) \][/tex]