Solve the compound inequality for [tex]x[/tex]:
[tex]\[ 8 \ \textgreater \ 3x - 1 \ \textgreater \ 5 \][/tex]

Select one:
a. [tex]\(\frac{7}{3} \ \textgreater \ x \ \textgreater \ \frac{4}{3}\)[/tex]
b. [tex]\(12 \ \textless \ x \ \textless \ 28\)[/tex]
c. [tex]\(3 \ \textgreater \ x \ \textgreater \ 2\)[/tex]
d. [tex]\(27 \ \textgreater \ x \ \textgreater \ 18\)[/tex]



Answer :

Certainly! Let's solve the compound inequality step-by-step.

The given compound inequality is:

[tex]\[ 8 > 3x - 1 > 5 \][/tex]

This compound inequality consists of two separate inequalities:

1. [tex]\( 8 > 3x - 1 \)[/tex]
2. [tex]\( 3x - 1 > 5 \)[/tex]

We'll solve each inequality individually and then find the intersection of the solutions.

### Solving the first inequality:
[tex]\[ 8 > 3x - 1 \][/tex]

Add 1 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 8 + 1 > 3x \][/tex]
[tex]\[ 9 > 3x \][/tex]

Divide both sides by 3:
[tex]\[ \frac{9}{3} > x \][/tex]
[tex]\[ 3 > x \][/tex]

This can be rewritten as:
[tex]\[ x < 3 \][/tex]

### Solving the second inequality:
[tex]\[ 3x - 1 > 5 \][/tex]

Add 1 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 3x - 1 + 1 > 5 + 1 \][/tex]
[tex]\[ 3x > 6 \][/tex]

Divide both sides by 3:
[tex]\[ \frac{3x}{3} > \frac{6}{3} \][/tex]
[tex]\[ x > 2 \][/tex]

### Combining both solutions:
From the first inequality, we have:
[tex]\[ x < 3 \][/tex]

From the second inequality, we have:
[tex]\[ x > 2 \][/tex]

Combining these, we get:
[tex]\[ 2 < x < 3 \][/tex]

In interval notation, this is [tex]\( (2, 3) \)[/tex].

Now, let's match this to the given choices:

a. [tex]\( \frac{7}{3} > x > \frac{4}{3} \)[/tex]
b. [tex]\( 12 < x < 28 \)[/tex]
c. [tex]\( 3 > x > 2 \)[/tex]
d. [tex]\( 27 > x > 18 \)[/tex]

Clearly, the correct choice is:
c. [tex]\( 3 > x > 2 \)[/tex]

Thus, the solution to the compound inequality [tex]\( 8 > 3x - 1 > 5 \)[/tex] is:

[tex]\[ 3 > x > 2 \][/tex]

So, the correct answer is:
c. [tex]\( 3 > x > 2 \)[/tex]