Solve the compound inequality for [tex]\( x \)[/tex]:

[tex]\[ 5x - 7 \geq 8 \text{ or } 4x + 4 \ \textless \ -20 \][/tex]

Select one:
A. [tex]\( x \ \textless \ -4 \)[/tex]
B. [tex]\( x \geq 3 \text{ or } x \ \textless \ -6 \)[/tex]
C. [tex]\( x \geq 5 \text{ or } x \ \textgreater \ 6 \)[/tex]
D. [tex]\( x \geq \frac{1}{5} \text{ or } x \ \textless \ -4 \)[/tex]



Answer :

Let's solve the compound inequality step by step:

### Inequality 1: [tex]\(5x - 7 \geq 8\)[/tex]

1. Isolate the variable term:
Add 7 to both sides of the inequality:
[tex]\[ 5x - 7 + 7 \geq 8 + 7 \][/tex]
Simplifying this, we get:
[tex]\[ 5x \geq 15 \][/tex]

2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 5:
[tex]\[ \frac{5x}{5} \geq \frac{15}{5} \][/tex]
Simplifying this, we get:
[tex]\[ x \geq 3 \][/tex]

### Inequality 2: [tex]\(4x + 4 < -20\)[/tex]

1. Isolate the variable term:
Subtract 4 from both sides of the inequality:
[tex]\[ 4x + 4 - 4 < -20 - 4 \][/tex]
Simplifying this, we get:
[tex]\[ 4x < -24 \][/tex]

2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 4:
[tex]\[ \frac{4x}{4} < \frac{-24}{4} \][/tex]
Simplifying this, we get:
[tex]\[ x < -6 \][/tex]

### Combine the results

From the two inequalities, we have:

1. [tex]\( x \geq 3 \)[/tex]
2. [tex]\( x < -6 \)[/tex]

Thus, the solution to the compound inequality [tex]\( 5x - 7 \geq 8 \)[/tex] or [tex]\( 4x + 4 < -20 \)[/tex] is:

[tex]\[ x \geq 3 \text{ or } x < -6 \][/tex]

Therefore, the correct choice is:

b. [tex]\( x \geq 3 \text{ or } x < -6 \)[/tex]