Solve the compound inequality for [tex]\( x \)[/tex]:

[tex]\[ -7 \leq 6x + 5 \leq 23 \][/tex]

Select one:

A. [tex]\(-12 \leq x \leq 108\)[/tex]

B. [tex]\(-1 \leq x \leq \frac{14}{3}\)[/tex]

C. [tex]\(-1 \leq x \leq 6\)[/tex]

D. [tex]\(-2 \leq x \leq 3\)[/tex]



Answer :

To solve the compound inequality [tex]\( -7 \leq 6x + 5 \leq 23 \)[/tex] for [tex]\( x \)[/tex], we need to break it down into two separate inequalities and solve each one individually.

1. Solving the lower bound inequality:

[tex]\[ -7 \leq 6x + 5 \][/tex]

- Subtract 5 from both sides:

[tex]\[ -7 - 5 \leq 6x \][/tex]

- Simplify the left-hand side:

[tex]\[ -12 \leq 6x \][/tex]

- Divide by 6 to isolate [tex]\( x \)[/tex]:

[tex]\[ -12 / 6 \leq x \][/tex]

- Simplify the division:

[tex]\[ -2 \leq x \][/tex]


2. Solving the upper bound inequality:

[tex]\[ 6x + 5 \leq 23 \][/tex]

- Subtract 5 from both sides:

[tex]\[ 6x \leq 23 - 5 \][/tex]

- Simplify the right-hand side:

[tex]\[ 6x \leq 18 \][/tex]

- Divide by 6 to isolate [tex]\( x \)[/tex]:

[tex]\[ x \leq 18 / 6 \][/tex]

- Simplify the division:

[tex]\[ x \leq 3 \][/tex]


3. Combining the results:

From the lower bound, we have [tex]\( -2 \leq x \)[/tex]. From the upper bound, we have [tex]\( x \leq 3 \)[/tex]. Combining these two results gives us the solution:

[tex]\[ -2 \leq x \leq 3 \][/tex]

Therefore, the correct answer is:

d. [tex]\( -2 \leq x \leq 3 \)[/tex]