Answer :

To find the value of [tex]\(\frac{\sqrt{7} + \sqrt{2}}{\sqrt{3}}\)[/tex] correct to 4 decimal places, follow these steps:

1. Evaluate the square roots in the numerator:
- Calculate [tex]\(\sqrt{7}\)[/tex].
- Calculate [tex]\(\sqrt{2}\)[/tex].

2. Sum the square roots:
- Add the values of [tex]\(\sqrt{7}\)[/tex] and [tex]\(\sqrt{2}\)[/tex].

3. Evaluate the square root in the denominator:
- Calculate [tex]\(\sqrt{3}\)[/tex].

4. Perform the division:
- Divide the sum of the square roots by [tex]\(\sqrt{3}\)[/tex].

5. Round the result:
- Round the division result to 4 decimal places.

Following these steps:

1. The evaluated values are:
- [tex]\(\sqrt{7} \approx 2.6458\)[/tex]
- [tex]\(\sqrt{2} \approx 1.4142\)[/tex]

2. Sum the square roots:
[tex]\[ 2.6458 + 1.4142 = 4.0600 \][/tex]

3. The evaluated value is:
- [tex]\(\sqrt{3} \approx 1.7321\)[/tex]

4. Perform the division:
[tex]\[ \frac{4.0600}{1.7321} \approx 2.3440 \][/tex]

5. Round the result to 4 decimal places:
[tex]\[ 2.3440 \approx 2.344 \][/tex]

Thus, the value of [tex]\(\frac{\sqrt{7} + \sqrt{2}}{\sqrt{3}}\)[/tex] correct to 4 decimal places is:
[tex]\[ 2.344 \][/tex]