To determine the volume of Model 413 S, we need to follow these steps:
1. Identify the dimensions of Model 413 S:
- The length is 24 inches.
- The width is 72 inches.
- The height is 18 inches.
2. Calculate the volume in cubic inches:
- Volume [tex]\(V\)[/tex] is calculated using the formula for the volume of a rectangular prism: [tex]\(V = \text{length} \times \text{width} \times \text{height}\)[/tex].
- Plugging in the values: [tex]\(V = 24 \times 72 \times 18\)[/tex].
The volume in cubic inches is:
[tex]\[
V = 24 \times 72 \times 18 = 31,104 \text{ cubic inches}
\][/tex]
3. Convert the volume to cubic feet:
- We need to know that 1 cubic foot is equal to [tex]\(12^3\)[/tex] or 1,728 cubic inches.
- To convert cubic inches to cubic feet, divide the volume in cubic inches by 1,728:
[tex]\[
\text{Volume in cubic feet} = \frac{31,104}{1,728} = 18 \text{ cubic feet}
\][/tex]
Therefore, the volume of Model 413 S in cubic feet is:
[tex]\[
\boxed{18}
\][/tex]
Thus, the correct answer is A. 18.