\begin{tabular}{|c|}
\hline Model \\
\hline [tex]$411 R$[/tex] \\
\hline [tex]$412 R$[/tex] \\
\hline [tex]$413 S$[/tex] \\
\hline [tex]$414 S$[/tex] \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{c}
Dimensions \\
(in inches)
\end{tabular} \\
\hline 32 by 22 by 10 \\
\hline 28 by 36 by 15 \\
\hline 24 by 72 by 18 \\
\hline 25 by 24 by 6 \\
\hline
\end{tabular}

Each face of cabinet [tex]$413 S$[/tex] is in the shape of a rectangle. What is the volume, in cubic feet, of Model [tex]$413 S$[/tex]?

A. 18
B. 31
C. 36
D. 108



Answer :

To determine the volume of Model 413 S, we need to follow these steps:

1. Identify the dimensions of Model 413 S:
- The length is 24 inches.
- The width is 72 inches.
- The height is 18 inches.

2. Calculate the volume in cubic inches:
- Volume [tex]\(V\)[/tex] is calculated using the formula for the volume of a rectangular prism: [tex]\(V = \text{length} \times \text{width} \times \text{height}\)[/tex].
- Plugging in the values: [tex]\(V = 24 \times 72 \times 18\)[/tex].

The volume in cubic inches is:
[tex]\[ V = 24 \times 72 \times 18 = 31,104 \text{ cubic inches} \][/tex]

3. Convert the volume to cubic feet:
- We need to know that 1 cubic foot is equal to [tex]\(12^3\)[/tex] or 1,728 cubic inches.
- To convert cubic inches to cubic feet, divide the volume in cubic inches by 1,728:
[tex]\[ \text{Volume in cubic feet} = \frac{31,104}{1,728} = 18 \text{ cubic feet} \][/tex]

Therefore, the volume of Model 413 S in cubic feet is:

[tex]\[ \boxed{18} \][/tex]

Thus, the correct answer is A. 18.