Suppose that the functions [tex]$h$[/tex] and [tex]$f$[/tex] are defined as follows.
[tex]\[
\begin{array}{l}
h(x) = x^2 - 8 \\
f(x) = \frac{x}{7}
\end{array}
\][/tex]

Find the compositions [tex]\(h \circ h\)[/tex] and [tex]\(f \circ f\)[/tex].

Simplify your answers as much as possible.
(Assume that your expressions are defined for all [tex]\(x\)[/tex] in the domain of the composition. You do not have to indicate the domain.)

[tex]\[
\begin{array}{l}
(h \circ h)(x) = \square \\
(f \circ f)(x) = \square
\end{array}
\][/tex]



Answer :

To find the compositions [tex]\((h \circ h)(x)\)[/tex] and [tex]\((f \circ f)(x)\)[/tex] given the functions [tex]\( h(x) \)[/tex] and [tex]\( f(x) \)[/tex], let's proceed step by step.

### Composition [tex]\( (h \circ h)(x) \)[/tex]

1. Define [tex]\( h(x) \)[/tex]:
[tex]\[ h(x) = x^2 - 8 \][/tex]

2. Compute [tex]\( h(h(x)) \)[/tex] by substituting [tex]\( h(x) \)[/tex] into itself:
[tex]\[ (h \circ h)(x) = h(h(x)) \][/tex]
Substituting [tex]\( h(x) \)[/tex]:
[tex]\[ h(h(x)) = h(x^2 - 8) \][/tex]

3. Evaluate [tex]\( h(x^2 - 8) \)[/tex] using the definition of [tex]\( h(x) \)[/tex]:
[tex]\[ h(x^2 - 8) = (x^2 - 8)^2 - 8 \][/tex]

4. Expand the expression [tex]\((x^2 - 8)^2\)[/tex]:
[tex]\[ (x^2 - 8)^2 = x^4 - 16x^2 + 64 \][/tex]

5. Subtract 8 from the result:
[tex]\[ x^4 - 16x^2 + 64 - 8 \][/tex]

6. Simplify the expression:
[tex]\[ x^4 - 16x^2 + 56 \][/tex]

Thus:
[tex]\[ (h \circ h)(x) = x^4 - 16x^2 + 56 \][/tex]

### Composition [tex]\( (f \circ f)(x) \)[/tex]

1. Define [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \frac{x}{7} \][/tex]

2. Compute [tex]\( f(f(x)) \)[/tex] by substituting [tex]\( f(x) \)[/tex] into itself:
[tex]\[ (f \circ f)(x) = f(f(x)) \][/tex]
Substituting [tex]\( f(x) \)[/tex]:
[tex]\[ f(f(x)) = f\left(\frac{x}{7}\right) \][/tex]

3. Evaluate [tex]\( f\left(\frac{x}{7}\right) \)[/tex] using the definition of [tex]\( f(x) \)[/tex]:
[tex]\[ f\left(\frac{x}{7}\right) = \frac{1}{7} \cdot \frac{x}{7} \][/tex]

4. Simplify the expression:
[tex]\[ \frac{x}{7} \cdot \frac{1}{7} = \frac{x}{49} \][/tex]

Thus:
[tex]\[ (f \circ f)(x) = \frac{x}{49} \][/tex]

Summarizing the results:

[tex]\[ (h \circ h)(x) = x^4 - 16x^2 + 56 \][/tex]
[tex]\[ (f \circ f)(x) = \frac{x}{49} \][/tex]