Quadrilateral JKLM is inscribed in a circle. The angles of quadrilateral JKLM are described as follows:

- [tex]m_{\angle J} = 95^{\circ}[/tex]
- [tex]m_{\angle K} = (215 - 4x)^{\circ}[/tex]
- [tex]m_{\angle L} = (2x + 15)^{\circ}[/tex]
- [tex]m_{\angle M} = (140 - x)^{\circ}[/tex]

Which angle has the greatest measure?

A. [tex]\angle M[/tex]
B. [tex]\angle J[/tex]
C. [tex]\angle L[/tex]
D. [tex]\angle K[/tex]



Answer :

To solve this problem, we need to determine the measure of each angle using the given relationships and find which angle has the greatest measure.

1. Given Angles:
- [tex]\( m_{\angle J} = 95^\circ \)[/tex]
- [tex]\( m_{\angle K} = (215 - 4x)^\circ \)[/tex]
- [tex]\( m_{\angle L} = (2x + 15)^\circ \)[/tex]
- [tex]\( m_{\angle M} = (140 - x)^\circ \)[/tex]

2. Properties of a Quadrilateral Inscribed in a Circle:
Quadrilateral JKLM is inscribed in a circle, meaning the sum of the measures of each pair of opposite angles equals [tex]\(180^\circ\)[/tex].

- [tex]\( m_{\angle J} + m_{\angle L} = 180^\circ \)[/tex]
- [tex]\( m_{\angle K} + m_{\angle M} = 180^\circ \)[/tex]

3. Setting Up Equations:

For [tex]\( m_{\angle J} + m_{\angle L} = 180^\circ \)[/tex]:
[tex]\[ 95 + (2x + 15) = 180 \][/tex]
Simplifying:
[tex]\[ 95 + 2x + 15 = 180 \][/tex]
[tex]\[ 2x + 110 = 180 \][/tex]
[tex]\[ 2x = 70 \][/tex]
[tex]\[ x = 35 \][/tex]

For [tex]\( m_{\angle K} + m_{\angle M} = 180^\circ \)[/tex]:
[tex]\[ (215 - 4x) + (140 - x) = 180 \][/tex]
Simplifying:
[tex]\[ 215 - 4x + 140 - x = 180 \][/tex]
[tex]\[ 355 - 5x = 180 \][/tex]
[tex]\[ -5x = -175 \][/tex]
[tex]\[ x = 35 \][/tex]

4. Calculating Angle Measures:
Using [tex]\( x = 35 \)[/tex]:

- [tex]\( m_{\angle J} = 95^\circ \)[/tex] (given directly)
- [tex]\( m_{\angle K} = 215 - 4(35) = 215 - 140 = 75^\circ \)[/tex]
- [tex]\( m_{\angle L} = 2(35) + 15 = 70 + 15 = 85^\circ \)[/tex]
- [tex]\( m_{\angle M} = 140 - 35 = 105^\circ \)[/tex]

5. Comparing Angle Measures:

- [tex]\( m_{\angle J} = 95^\circ \)[/tex]
- [tex]\( m_{\angle K} = 75^\circ \)[/tex]
- [tex]\( m_{\angle L} = 85^\circ \)[/tex]
- [tex]\( m_{\angle M} = 105^\circ \)[/tex]

Among these values, the greatest angle measure is [tex]\( 105^\circ \)[/tex].

6. Conclusion:
The angle with the greatest measure is [tex]\( m_{\angle M} = 105^\circ \)[/tex].

Therefore, the correct answer is:
A. angle [tex]\( M \)[/tex]