Find the projection of [tex]\mathbf{u} = \langle -6, -7 \rangle[/tex] onto [tex]\mathbf{v} = \langle 1, 1 \rangle[/tex].

A. [tex]\left\langle -\frac{13}{2}, -\frac{13}{2} \right\rangle[/tex]

B. [tex]\left\langle 39, \frac{91}{2} \right\rangle[/tex]

C. [tex]\left\langle -\frac{13}{1764}, -\frac{13}{1764} \right\rangle[/tex]

D. [tex]\left\langle -\frac{2}{13}, -\frac{2}{13} \right\rangle[/tex]



Answer :

To find the projection of the vector [tex]\( u = \langle -6, -7 \rangle \)[/tex] onto the vector [tex]\( v = \langle 1, 1 \rangle \)[/tex], we follow these steps:

1. Find the dot product of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u \cdot v = (-6) \cdot 1 + (-7) \cdot 1 = -6 - 7 = -13 \][/tex]

2. Calculate the magnitude squared of [tex]\( v \)[/tex] (also called the norm of [tex]\( v \)[/tex] squared):
[tex]\[ \|v\|^2 = v \cdot v = 1 \cdot 1 + 1 \cdot 1 = 1 + 1 = 2 \][/tex]

3. Use the dot product and the norm squared to find the projection of [tex]\( u \)[/tex] onto [tex]\( v \)[/tex]:
[tex]\[ \text{Proj}_v u = \left( \frac{u \cdot v}{\|v\|^2} \right) v \][/tex]
Substitute the values:
[tex]\[ \text{Proj}_v u = \left( \frac{-13}{2} \right) \langle 1, 1 \rangle \][/tex]

4. Distribute the scalar to the vector [tex]\( v \)[/tex]:
[tex]\[ \text{Proj}_v u = \left\langle \frac{-13}{2} \cdot 1, \frac{-13}{2} \cdot 1 \right\rangle = \left\langle -6.5, -6.5 \right\rangle \][/tex]

Thus, the projection of [tex]\( u \)[/tex] onto [tex]\( v \)[/tex] is:
[tex]\[ \boxed{\left\langle -6.5, -6.5 \right\rangle} \][/tex]