Answer :
To find [tex]\(\sin(2A)\)[/tex] given that [tex]\(\sin A = -\frac{12}{13}\)[/tex] and [tex]\(A\)[/tex] is in the third quadrant, we follow these steps:
1. Recognize that in the third quadrant, both sine and cosine values are negative. Given [tex]\(\sin A = -\frac{12}{13}\)[/tex], we need to find [tex]\(\cos A\)[/tex].
2. Use the Pythagorean identity:
[tex]\[ \sin^2(A) + \cos^2(A) = 1 \][/tex]
3. Substitute the value of [tex]\(\sin A\)[/tex] and solve for [tex]\(\cos^2(A)\)[/tex]:
[tex]\[ \left(-\frac{12}{13}\right)^2 + \cos^2(A) = 1 \][/tex]
[tex]\[ \frac{144}{169} + \cos^2(A) = 1 \][/tex]
[tex]\[ \cos^2(A) = 1 - \frac{144}{169} \][/tex]
[tex]\[ \cos^2(A) = \frac{169}{169} - \frac{144}{169} \][/tex]
[tex]\[ \cos^2(A) = \frac{25}{169} \][/tex]
4. Take the square root of both sides to find [tex]\(\cos A\)[/tex]. Since [tex]\(A\)[/tex] is in the third quadrant, [tex]\(\cos A\)[/tex] is negative:
[tex]\[ \cos A = -\sqrt{\frac{25}{169}} \][/tex]
[tex]\[ \cos A = -\frac{5}{13} \][/tex]
5. Now, use the double-angle identity for sine:
[tex]\[ \sin(2A) = 2 \sin(A) \cos(A) \][/tex]
6. Substitute [tex]\(\sin A = -\frac{12}{13}\)[/tex] and [tex]\(\cos A = -\frac{5}{13}\)[/tex]:
[tex]\[ \sin(2A) = 2 \left(-\frac{12}{13}\right) \left(-\frac{5}{13}\right) \][/tex]
[tex]\[ \sin(2A) = 2 \left(\frac{60}{169}\right) \][/tex]
[tex]\[ \sin(2A) = \frac{120}{169} \][/tex]
Thus, the value of [tex]\(\sin(2A)\)[/tex] is approximately:
[tex]\[ \sin(2A) \approx 0.710059 \][/tex]
Hence, [tex]\(\sin(2A) = \frac{120}{169} \approx 0.710059\)[/tex].
1. Recognize that in the third quadrant, both sine and cosine values are negative. Given [tex]\(\sin A = -\frac{12}{13}\)[/tex], we need to find [tex]\(\cos A\)[/tex].
2. Use the Pythagorean identity:
[tex]\[ \sin^2(A) + \cos^2(A) = 1 \][/tex]
3. Substitute the value of [tex]\(\sin A\)[/tex] and solve for [tex]\(\cos^2(A)\)[/tex]:
[tex]\[ \left(-\frac{12}{13}\right)^2 + \cos^2(A) = 1 \][/tex]
[tex]\[ \frac{144}{169} + \cos^2(A) = 1 \][/tex]
[tex]\[ \cos^2(A) = 1 - \frac{144}{169} \][/tex]
[tex]\[ \cos^2(A) = \frac{169}{169} - \frac{144}{169} \][/tex]
[tex]\[ \cos^2(A) = \frac{25}{169} \][/tex]
4. Take the square root of both sides to find [tex]\(\cos A\)[/tex]. Since [tex]\(A\)[/tex] is in the third quadrant, [tex]\(\cos A\)[/tex] is negative:
[tex]\[ \cos A = -\sqrt{\frac{25}{169}} \][/tex]
[tex]\[ \cos A = -\frac{5}{13} \][/tex]
5. Now, use the double-angle identity for sine:
[tex]\[ \sin(2A) = 2 \sin(A) \cos(A) \][/tex]
6. Substitute [tex]\(\sin A = -\frac{12}{13}\)[/tex] and [tex]\(\cos A = -\frac{5}{13}\)[/tex]:
[tex]\[ \sin(2A) = 2 \left(-\frac{12}{13}\right) \left(-\frac{5}{13}\right) \][/tex]
[tex]\[ \sin(2A) = 2 \left(\frac{60}{169}\right) \][/tex]
[tex]\[ \sin(2A) = \frac{120}{169} \][/tex]
Thus, the value of [tex]\(\sin(2A)\)[/tex] is approximately:
[tex]\[ \sin(2A) \approx 0.710059 \][/tex]
Hence, [tex]\(\sin(2A) = \frac{120}{169} \approx 0.710059\)[/tex].