Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]



Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
Given the equation [tex]\( 2x - 8 = 4y \)[/tex], complete the following table:

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$x$ & -8 & -6 & -4 & -2 & 0 \\
\hline
$y$ & & & & & \\
\hline
\end{tabular}
\][/tex]



Answer :

Certainly! Let's solve the equation [tex]\(2x - 8 = 4y\)[/tex] for the given [tex]\(x\)[/tex] values step-by-step. The goal is to find the corresponding [tex]\(y\)[/tex] values.

The equation given is:
[tex]\[2x - 8 = 4y\][/tex]

First, we need to solve for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex]:
[tex]\[2x - 8 = 4y\][/tex]

Step 1: Isolate [tex]\(y\)[/tex] by first subtracting 8 from both sides:
[tex]\[2x - 8 = 4y\][/tex]

Step 2: Divide both sides by 4 to solve for [tex]\(y\)[/tex]:
[tex]\[y = \frac{2x - 8}{4}\][/tex]
[tex]\[y = \frac{2x}{4} - \frac{8}{4}\][/tex]
[tex]\[y = \frac{x}{2} - 2\][/tex]

Now that we have the expression for [tex]\(y\)[/tex]:
[tex]\[y = \frac{x}{2} - 2\][/tex]

We can calculate [tex]\(y\)[/tex] for each given [tex]\(x\)[/tex] value.

### For [tex]\(x = -8\)[/tex]:
[tex]\[y = \frac{-8}{2} - 2\][/tex]
[tex]\[y = -4 - 2\][/tex]
[tex]\[y = -6\][/tex]

### For [tex]\(x = -6\)[/tex]:
[tex]\[y = \frac{-6}{2} - 2\][/tex]
[tex]\[y = -3 - 2\][/tex]
[tex]\[y = -5\][/tex]

### For [tex]\(x = -4\)[/tex]:
[tex]\[y = \frac{-4}{2} - 2\][/tex]
[tex]\[y = -2 - 2\][/tex]
[tex]\[y = -4\][/tex]

### For [tex]\(x = -2\)[/tex]:
[tex]\[y = \frac{-2}{2} - 2\][/tex]
[tex]\[y = -1 - 2\][/tex]
[tex]\[y = -3\][/tex]

### For [tex]\(x = 0\)[/tex]:
[tex]\[y = \frac{0}{2} - 2\][/tex]
[tex]\[y = 0 - 2\][/tex]
[tex]\[y = -2\][/tex]

Now we can complete the table with the calculated [tex]\(y\)[/tex] values:
[tex]\[ \begin{tabular}{|l|l|l|l|l|l|} \hline $x$ & -8 & -6 & -4 & -2 & 0 \\ \hline $y$ & -6 & -5 & -4 & -3 & -2 \\ \hline \end{tabular} \][/tex]

So, the completed table is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -8 & -6 & -4 & -2 & 0 \\ \hline y & -6 & -5 & -4 & -3 & -2 \\ \hline \end{array} \][/tex]