What is the efficiency of an engine that does 576 J of work and exhausts 144 J of heat while taking in 720 J of heat? Use [tex]$e=\frac{W_{\text{done}}}{Q_{\text{in}}}$[/tex] and convert to a percentage.

A. [tex]$20\%$[/tex]
B. [tex]$25\%$[/tex]
C. [tex]$10\%$[/tex]
D. [tex]$80\%$[/tex]



Answer :

To determine the efficiency of an engine, we use the formula:

[tex]\[ e = \frac{W_{\text{done}}}{Q_{\text{in}}} \][/tex]

where:
- [tex]\( W_{\text{done}} \)[/tex] is the work done by the engine,
- [tex]\( Q_{\text{in}} \)[/tex] is the heat energy taken in by the engine.

Given:
- [tex]\( W_{\text{done}} \)[/tex] = 576 J,
- [tex]\( Q_{\text{in}} \)[/tex] = 720 J.

Now, plug these values into the formula:

[tex]\[ e = \frac{576}{720} \][/tex]

This simplifies to:

[tex]\[ e = 0.8 \][/tex]

To convert this efficiency to a percentage, we multiply by 100:

[tex]\[ e \times 100 = 0.8 \times 100 = 80\% \][/tex]

Therefore, the efficiency of the engine is:

[tex]\[ \boxed{80\%} \][/tex]

So, the correct answer is:

D. [tex]\( 80\% \)[/tex]