Simplify the following expression.

[tex]\[
\frac{2}{x^2-25} - \frac{x+3}{x-5}
\][/tex]

A. [tex]\(\frac{-x-1}{x^2-x-20}\)[/tex]

B. [tex]\(\frac{-x^2+2x+17}{x^2-25}\)[/tex]

C. [tex]\(\frac{-x^2-8x-13}{x^2-25}\)[/tex]

D. [tex]\(\frac{-x+5}{x^2-x-30}\)[/tex]



Answer :

Alright, let's simplify the given expression step-by-step.

Given expression:
[tex]\[ \frac{2}{x^2-25} - \frac{x+3}{x-5} \][/tex]

First, let's factor the denominator [tex]\(x^2-25\)[/tex]:
[tex]\[ x^2-25 = (x-5)(x+5) \][/tex]

So, the expression becomes:
[tex]\[ \frac{2}{(x-5)(x+5)} - \frac{x+3}{x-5} \][/tex]

To combine these fractions, we need a common denominator. The common denominator is [tex]\((x-5)(x+5)\)[/tex]. Therefore, we rewrite the second fraction with this common denominator:
[tex]\[ \frac{2}{(x-5)(x+5)} - \frac{(x+3)(x+5)}{(x-5)(x+5)} \][/tex]

Now, combine both fractions into a single expression:
[tex]\[ \frac{2 - (x+3)(x+5)}{(x-5)(x+5)} \][/tex]

Expand the numerator:
[tex]\[ \frac{2 - (x^2 + 5x + 3x + 15)}{(x-5)(x+5)} \][/tex]

Combine like terms in the numerator:
[tex]\[ \frac{2 - (x^2 + 8x + 15)}{(x-5)(x+5)} \][/tex]

Distribute the negative sign inside the numerator:
[tex]\[ \frac{2 - x^2 - 8x - 15}{(x-5)(x+5)} \][/tex]

Combine all the terms in the numerator:
[tex]\[ \frac{-x^2 - 8x - 13}{(x-5)(x+5)} \][/tex]

Which simplifies to:
[tex]\[ \frac{-x^2 - 8x - 13}{x^2 - 25} \][/tex]

From the given choices, this corresponds to:
C. [tex]\(\frac{-x^2 - 8 x - 13}{x^2-25}\)[/tex]

So, the correct answer is:
[tex]\[ \boxed{C} \][/tex]