Use sigma notation to represent the following series for 12 terms:

[tex]\[ 7-\frac{7}{3}+\frac{7}{9}-\frac{7}{27} \cdots \][/tex]

Expressions to choose from:
- [tex]\( -7\left(\frac{1}{3}\right)^{k-1} \)[/tex]
- [tex]\( 21\left(-\frac{1}{3}\right)^{k-1} \)[/tex]
- [tex]\( 7\left(-\frac{1}{3}\right)^{k-1} \)[/tex]
- [tex]\( 3\left(\frac{7}{3}\right)^{k-1} \)[/tex]
- [tex]\( -3\left(-\frac{7}{3}\right)^{k-1} \)[/tex]
- [tex]\( -21\left(\frac{1}{3}\right)^{k-1} \)[/tex]

[tex]\[ \sum_{k=1}^{12} \][/tex]



Answer :

To express the given series using sigma notation, we need to identify the general term of the series and then use that term within the sigma notation.

The given series is:
[tex]\[ 7 - \frac{7}{3} + \frac{7}{9} - \frac{7}{27} \cdots \][/tex]

First, we notice that each term in the series includes the number [tex]\( 7 \)[/tex] and a power of [tex]\( \left(-\frac{1}{3}\right) \)[/tex].

Series pattern:
- The first term is [tex]\( 7 \)[/tex].
- The second term is [tex]\( -\frac{7}{3} \)[/tex] which is [tex]\( 7 \left(-\frac{1}{3}\right) \)[/tex].
- The third term is [tex]\( \frac{7}{9} \)[/tex] which is [tex]\( 7 \left(-\frac{1}{3}\right)^2 \)[/tex].
- The fourth term is [tex]\( -\frac{7}{27} \)[/tex] which is [tex]\( 7 \left(-\frac{1}{3}\right)^3 \)[/tex].

Observing this pattern, the general term seems to be [tex]\( 7 \left(-\frac{1}{3}\right)^{k-1} \)[/tex].

Thus, the series can be represented in sigma notation as:
[tex]\[ \sum_{k=1}^{12} 7 \left(-\frac{1}{3}\right)^{k-1} \][/tex]

So, the correct expression to complete the sigma notation is [tex]\( 7 \left(-\frac{1}{3}\right)^{k-1} \)[/tex].

Final answer in sigma notation:
[tex]\[ \sum_{k=1}^{12} 7 \left(-\frac{1}{3}\right)^{k-1} \][/tex]