Answer :
Let's simplify the expression [tex]\((3 - 5i)(-4 + 2i)\)[/tex] step-by-step.
First, we apply the distributive property, also known as the FOIL method (First, Outer, Inner, Last):
[tex]\[ (3 - 5i)(-4 + 2i) \][/tex]
1. First terms: Multiply the first terms of each binomial:
[tex]\[ 3 \cdot (-4) = -12 \][/tex]
2. Outer terms: Multiply the outer terms of the binomials:
[tex]\[ 3 \cdot 2i = 6i \][/tex]
3. Inner terms: Multiply the inner terms of the binomials:
[tex]\[ -5i \cdot (-4) = 20i \][/tex]
4. Last terms: Multiply the last terms of each binomial:
[tex]\[ -5i \cdot 2i = -10i^2 \][/tex]
Remember, [tex]\(i^2 = -1\)[/tex]. So, we substitute [tex]\(i^2\)[/tex] with [tex]\(-1\)[/tex]:
[tex]\[ -10i^2 = -10(-1) = 10 \][/tex]
Now, we combine all these results:
[tex]\[ (3 - 5i)(-4 + 2i) = -12 + 6i + 20i + 10 \][/tex]
Combine the like terms (real parts and imaginary parts):
Real part:
[tex]\[ -12 + 10 = -2 \][/tex]
Imaginary part:
[tex]\[ 6i + 20i = 26i \][/tex]
So, the simplified expression is:
[tex]\[ -2 + 26i \][/tex]
Thus, the correct answer is:
A. [tex]\(-2 + 26i\)[/tex]
First, we apply the distributive property, also known as the FOIL method (First, Outer, Inner, Last):
[tex]\[ (3 - 5i)(-4 + 2i) \][/tex]
1. First terms: Multiply the first terms of each binomial:
[tex]\[ 3 \cdot (-4) = -12 \][/tex]
2. Outer terms: Multiply the outer terms of the binomials:
[tex]\[ 3 \cdot 2i = 6i \][/tex]
3. Inner terms: Multiply the inner terms of the binomials:
[tex]\[ -5i \cdot (-4) = 20i \][/tex]
4. Last terms: Multiply the last terms of each binomial:
[tex]\[ -5i \cdot 2i = -10i^2 \][/tex]
Remember, [tex]\(i^2 = -1\)[/tex]. So, we substitute [tex]\(i^2\)[/tex] with [tex]\(-1\)[/tex]:
[tex]\[ -10i^2 = -10(-1) = 10 \][/tex]
Now, we combine all these results:
[tex]\[ (3 - 5i)(-4 + 2i) = -12 + 6i + 20i + 10 \][/tex]
Combine the like terms (real parts and imaginary parts):
Real part:
[tex]\[ -12 + 10 = -2 \][/tex]
Imaginary part:
[tex]\[ 6i + 20i = 26i \][/tex]
So, the simplified expression is:
[tex]\[ -2 + 26i \][/tex]
Thus, the correct answer is:
A. [tex]\(-2 + 26i\)[/tex]