Answer :

Certainly! Let's evaluate the given expression [tex]\( f\left(\frac{\cos^2\theta - 1}{\sin^2\theta}\right) \)[/tex].

To simplify the given expression, we start with the trigonometric identities:
[tex]\[ \cos^2\theta + \sin^2\theta = 1. \][/tex]

1. Simplify the numerator [tex]\( \cos^2\theta - 1 \)[/tex]:

Using the identity [tex]\( \cos^2\theta = 1 - \sin^2\theta \)[/tex]:
[tex]\[ \cos^2\theta - 1 = (1 - \sin^2\theta) - 1 = -\sin^2\theta. \][/tex]

2. Simplify the whole fraction [tex]\( \frac{\cos^2\theta - 1}{\sin^2\theta} \)[/tex]:

Substitute [tex]\( \cos^2\theta - 1 \)[/tex] from the previous step:
[tex]\[ \frac{\cos^2\theta - 1}{\sin^2\theta} = \frac{-\sin^2\theta}{\sin^2\theta}. \][/tex]

3. Simplify the division:
[tex]\[ \frac{-\sin^2\theta}{\sin^2\theta} = -1. \][/tex]

So, we have simplified [tex]\( \frac{\cos^2\theta - 1}{\sin^2\theta} \)[/tex] to [tex]\(-1\)[/tex].

Given that the question asks us to evaluate [tex]\( f \left( \text{the simplified expression} \right) \)[/tex], and the simplified expression is [tex]\(-1\)[/tex], we get:
[tex]\[ f \left( -1 \right). \][/tex]

Therefore, the correct evaluation of the given expression is [tex]\(-1\)[/tex].

So, the answer is [tex]\( \boxed{-1} \)[/tex].