For what value of [tex]$x$[/tex] is [tex]$\sin (x)=\cos \left(32^{\circ}\right)$[/tex], where [tex][tex]$0^{\circ}\ \textless \ x\ \textless \ 90^{\circ}$[/tex][/tex]?

A. [tex]$58^{\circ}$[/tex]

B. [tex]$13^{\circ}$[/tex]

C. [tex][tex]$64^{\circ}$[/tex][/tex]

D. [tex]$32^{\circ}$[/tex]



Answer :

To find the value of [tex]\( x \)[/tex] for which [tex]\( \sin(x) = \cos(32^\circ) \)[/tex] given that [tex]\( 0^\circ < x < 90^\circ \)[/tex], we can make use of a fundamental trigonometric identity that relates sine and cosine. Specifically, the identity states that:

[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]

Given [tex]\(\sin(x) = \cos(32^\circ)\)[/tex], we can use the identity to equate [tex]\( \sin(x) \)[/tex] with [tex]\( \cos(32^\circ) \)[/tex] as follows:

[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]

This means we can set [tex]\(\cos(32^\circ)\)[/tex] equal to [tex]\(\cos(90^\circ - x)\)[/tex]. Therefore:

[tex]\[ \cos(32^\circ) = \cos(90^\circ - x) \][/tex]

In order for this equality to hold true, the arguments of the cosines must be equal, since the cosine function is one-to-one in the interval from [tex]\(0^\circ\)[/tex] to [tex]\(90^\circ\)[/tex]. Thus:

[tex]\[ 32^\circ = 90^\circ - x \][/tex]

To solve for [tex]\( x \)[/tex], we rearrange the equation:

[tex]\[ x = 90^\circ - 32^\circ \][/tex]

[tex]\[ x = 58^\circ \][/tex]

Therefore, the value of [tex]\( x \)[/tex] that satisfies [tex]\( \sin(x) = \cos(32^\circ) \)[/tex] in the interval [tex]\( 0^\circ < x < 90^\circ \)[/tex] is:

[tex]\[ \boxed{58^\circ} \][/tex]

Hence, the correct answer is:
A. [tex]\( 58^\circ \)[/tex]