Select the correct answer.

Simplify:

[tex]\[
\left(m^3\right)^6 \div m^{18}
\][/tex]

A. [tex]\(m^4\)[/tex]

B. 1

C. [tex]\(m^{-9}\)[/tex]

D. [tex]\(m\)[/tex]



Answer :

To simplify the expression [tex]\(\left(m^3\right)^6 \div m^{18}\)[/tex], follow these steps:

1. Simplify the exponentiation: First, simplify the expression inside the parentheses.
[tex]\[ \left(m^3\right)^6 \][/tex]
When raising a power to another power, you multiply the exponents:
[tex]\[ (m^3)^6 = m^{3 \cdot 6} = m^{18} \][/tex]

2. Simplify the division: Now divide the simplified expression by [tex]\(m^{18}\)[/tex]:
[tex]\[ \frac{m^{18}}{m^{18}} \][/tex]
When you divide like bases, you subtract the exponents:
[tex]\[ m^{18 - 18} = m^0 \][/tex]

3. Evaluate [tex]\(m^0\)[/tex]: Any nonzero number raised to the power of zero is 1:
[tex]\[ m^0 = 1 \][/tex]

Therefore, the simplified form of the expression [tex]\(\left(m^3\right)^6 \div m^{18}\)[/tex] is [tex]\(\boxed{1}\)[/tex].

So, the correct answer is:
B. 1