Answer :
Certainly! Let's evaluate the expression [tex]\( 3(3x + y) - 5x + 13 \)[/tex] step by step for the given values of [tex]\( x = 4 \)[/tex] and [tex]\( y = 7 \)[/tex].
1. Substitute the given values into the expression:
[tex]\[ x = 4, \quad y = 7 \][/tex]
The expression becomes:
[tex]\[ 3(3(4) + 7) - 5(4) + 13 \][/tex]
2. Simplify inside the parentheses:
First, calculate [tex]\(3(4)\)[/tex]:
[tex]\[ 3(4) = 12 \][/tex]
Then add [tex]\(y\)[/tex] (which is 7) to this product:
[tex]\[ 12 + 7 = 19 \][/tex]
3. Multiply the result by 3:
[tex]\[ 3(19) = 57 \][/tex]
4. Subtract [tex]\(5x\)[/tex] where [tex]\(x = 4\)[/tex]:
Calculate [tex]\(5(4)\)[/tex]:
[tex]\[ 5(4) = 20 \][/tex]
Then subtract this result from 57:
[tex]\[ 57 - 20 = 37 \][/tex]
5. Finally, add 13:
[tex]\[ 37 + 13 = 50 \][/tex]
Therefore, the expression evaluates to:
[tex]\[ 3(3x + y) - 5x + 13 = 50 \][/tex]
So, the answer is:
[tex]\[ 50 \][/tex]
1. Substitute the given values into the expression:
[tex]\[ x = 4, \quad y = 7 \][/tex]
The expression becomes:
[tex]\[ 3(3(4) + 7) - 5(4) + 13 \][/tex]
2. Simplify inside the parentheses:
First, calculate [tex]\(3(4)\)[/tex]:
[tex]\[ 3(4) = 12 \][/tex]
Then add [tex]\(y\)[/tex] (which is 7) to this product:
[tex]\[ 12 + 7 = 19 \][/tex]
3. Multiply the result by 3:
[tex]\[ 3(19) = 57 \][/tex]
4. Subtract [tex]\(5x\)[/tex] where [tex]\(x = 4\)[/tex]:
Calculate [tex]\(5(4)\)[/tex]:
[tex]\[ 5(4) = 20 \][/tex]
Then subtract this result from 57:
[tex]\[ 57 - 20 = 37 \][/tex]
5. Finally, add 13:
[tex]\[ 37 + 13 = 50 \][/tex]
Therefore, the expression evaluates to:
[tex]\[ 3(3x + y) - 5x + 13 = 50 \][/tex]
So, the answer is:
[tex]\[ 50 \][/tex]