Define the function [tex]f(x) = \sqrt{x^2 + x}[/tex].

---

Note: The original text did not specify a question or task. The rephrased version adds a directive for clarity.



Answer :

To solve for [tex]\( f(x) = \sqrt{x^2 + x} \)[/tex] at a specific value of [tex]\( x \)[/tex], follow these steps:

1. Substitute the value of [tex]\( x \)[/tex] into the function:
First, we need to choose a value for [tex]\( x \)[/tex]. Let's use [tex]\( x = 5 \)[/tex].

[tex]\[ f(5) = \sqrt{5^2 + 5} \][/tex]

2. Calculate the expression inside the square root:
Compute [tex]\( 5^2 + 5 \)[/tex]:

[tex]\[ 5^2 = 25 \][/tex]

Adding 5 to 25:

[tex]\[ 25 + 5 = 30 \][/tex]

3. Simplify the square root expression:
Now take the square root of 30:

[tex]\[ f(5) = \sqrt{30} \][/tex]

4. Determine the square root value:
The square root of 30 is approximately [tex]\( 5.477225575051661 \)[/tex].

Therefore, [tex]\( f(x) \)[/tex] at [tex]\( x = 5 \)[/tex] is:

[tex]\[ f(5) = 5.477225575051661 \][/tex]

This detailed step-by-step evaluation shows that [tex]\( f(5) = 5.477225575051661 \)[/tex].