Answer :
Sure! Let's evaluate the expression [tex]\( 2y + 3(x - y) + x^2 \)[/tex] step by step, given [tex]\( x = 3 \)[/tex] and [tex]\( y = 5 \)[/tex].
1. Substitute the given values:
[tex]\[ x = 3, \quad y = 5 \][/tex]
2. Break down the expression into individual terms:
[tex]\[ \text{Expression} = 2y + 3(x - y) + x^2 \][/tex]
3. Evaluate each term one by one:
- First term: [tex]\( 2y \)[/tex]
[tex]\[ 2y = 2 \times 5 = 10 \][/tex]
- Second term: [tex]\( 3(x - y) \)[/tex]
[tex]\[ x - y = 3 - 5 = -2 \][/tex]
Then,
[tex]\[ 3(x - y) = 3 \times -2 = -6 \][/tex]
- Third term: [tex]\( x^2 \)[/tex]
[tex]\[ x^2 = 3^2 = 9 \][/tex]
4. Combine the evaluated terms:
[tex]\[ 2y + 3(x - y) + x^2 = 10 + (-6) + 9 \][/tex]
5. Add the values:
[tex]\[ 10 - 6 + 9 = 13 \][/tex]
So, the value of the expression [tex]\( 2y + 3(x - y) + x^2 \)[/tex] when [tex]\( x = 3 \)[/tex] and [tex]\( y = 5 \)[/tex] is:
[tex]\[ \boxed{13} \][/tex]
1. Substitute the given values:
[tex]\[ x = 3, \quad y = 5 \][/tex]
2. Break down the expression into individual terms:
[tex]\[ \text{Expression} = 2y + 3(x - y) + x^2 \][/tex]
3. Evaluate each term one by one:
- First term: [tex]\( 2y \)[/tex]
[tex]\[ 2y = 2 \times 5 = 10 \][/tex]
- Second term: [tex]\( 3(x - y) \)[/tex]
[tex]\[ x - y = 3 - 5 = -2 \][/tex]
Then,
[tex]\[ 3(x - y) = 3 \times -2 = -6 \][/tex]
- Third term: [tex]\( x^2 \)[/tex]
[tex]\[ x^2 = 3^2 = 9 \][/tex]
4. Combine the evaluated terms:
[tex]\[ 2y + 3(x - y) + x^2 = 10 + (-6) + 9 \][/tex]
5. Add the values:
[tex]\[ 10 - 6 + 9 = 13 \][/tex]
So, the value of the expression [tex]\( 2y + 3(x - y) + x^2 \)[/tex] when [tex]\( x = 3 \)[/tex] and [tex]\( y = 5 \)[/tex] is:
[tex]\[ \boxed{13} \][/tex]