Answer :
Certainly! Let's solve the equation step-by-step:
[tex]$10x - 2(x + 5) = 4x - 2$[/tex]
1. Distribute the [tex]\(-2\)[/tex] on the left-hand side of the equation:
[tex]$10x - 2x - 10 = 4x - 2$[/tex]
2. Combine like terms on the left-hand side:
[tex]$8x - 10 = 4x - 2$[/tex]
3. Subtract [tex]\(4x\)[/tex] from both sides to begin isolating [tex]\(x\)[/tex]:
[tex]$8x - 4x - 10 = -2$[/tex]
This simplifies to:
[tex]$4x - 10 = -2$[/tex]
4. Add 10 to both sides to further isolate [tex]\(x\)[/tex]:
[tex]$4x - 10 + 10 = -2 + 10$[/tex]
This simplifies to:
[tex]$4x = 8$[/tex]
5. Divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]$x = \frac{8}{4}$[/tex]
Therefore:
[tex]$x = 2$[/tex]
So the solution to the equation [tex]\(10x - 2(x + 5) = 4x - 2\)[/tex] is:
[tex]$x = 2$[/tex]
[tex]$10x - 2(x + 5) = 4x - 2$[/tex]
1. Distribute the [tex]\(-2\)[/tex] on the left-hand side of the equation:
[tex]$10x - 2x - 10 = 4x - 2$[/tex]
2. Combine like terms on the left-hand side:
[tex]$8x - 10 = 4x - 2$[/tex]
3. Subtract [tex]\(4x\)[/tex] from both sides to begin isolating [tex]\(x\)[/tex]:
[tex]$8x - 4x - 10 = -2$[/tex]
This simplifies to:
[tex]$4x - 10 = -2$[/tex]
4. Add 10 to both sides to further isolate [tex]\(x\)[/tex]:
[tex]$4x - 10 + 10 = -2 + 10$[/tex]
This simplifies to:
[tex]$4x = 8$[/tex]
5. Divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]$x = \frac{8}{4}$[/tex]
Therefore:
[tex]$x = 2$[/tex]
So the solution to the equation [tex]\(10x - 2(x + 5) = 4x - 2\)[/tex] is:
[tex]$x = 2$[/tex]