Solve the inequality.

[tex]\[ -\frac{1}{3} x - 12 \ \textgreater \ 21 \text{ or } -6x + 10 \ \textless \ -2 \][/tex]

[tex]\[ x \ \textless \ [?] \text{ or } x \ \textgreater \ \square \][/tex]



Answer :

To solve the given inequalities:
[tex]\[ -\frac{1}{3} x - 12 > 21 \quad \text{or} \quad -6x + 10 < -2 \][/tex]

we will tackle each inequality step by step.

Step 1: Solve [tex]\(-\frac{1}{3} x - 12 > 21\)[/tex]

1.1. Start by isolating [tex]\(x\)[/tex]:

[tex]\[ -\frac{1}{3} x - 12 > 21 \][/tex]

1.2. Add 12 to both sides to simplify:

[tex]\[ -\frac{1}{3} x > 33 \][/tex]

1.3. Multiply both sides by -3 (note that multiplying by a negative number reverses the inequality sign):

[tex]\[ x < -99 \][/tex]

So, the solution for the first inequality is:

[tex]\[ x < -99 \][/tex]

Step 2: Solve [tex]\(-6x + 10 < -2\)[/tex]

2.1. Start by isolating [tex]\(x\)[/tex]:

[tex]\[ -6x + 10 < -2 \][/tex]

2.2. Subtract 10 from both sides to simplify:

[tex]\[ -6x < -12 \][/tex]

2.3. Divide both sides by -6 (again, remember to reverse the inequality sign):

[tex]\[ x > 2 \][/tex]

So, the solution for the second inequality is:

[tex]\[ x > 2 \][/tex]

Combining both solutions, we get:

[tex]\[ x < -99 \quad \text{or} \quad x > 2 \][/tex]

Therefore, the final solution can be written as:

[tex]\[ x < -99 \quad \text{or} \quad x > 2 \][/tex]