Answer :
To solve the given inequalities:
[tex]\[ -\frac{1}{3} x - 12 > 21 \quad \text{or} \quad -6x + 10 < -2 \][/tex]
we will tackle each inequality step by step.
Step 1: Solve [tex]\(-\frac{1}{3} x - 12 > 21\)[/tex]
1.1. Start by isolating [tex]\(x\)[/tex]:
[tex]\[ -\frac{1}{3} x - 12 > 21 \][/tex]
1.2. Add 12 to both sides to simplify:
[tex]\[ -\frac{1}{3} x > 33 \][/tex]
1.3. Multiply both sides by -3 (note that multiplying by a negative number reverses the inequality sign):
[tex]\[ x < -99 \][/tex]
So, the solution for the first inequality is:
[tex]\[ x < -99 \][/tex]
Step 2: Solve [tex]\(-6x + 10 < -2\)[/tex]
2.1. Start by isolating [tex]\(x\)[/tex]:
[tex]\[ -6x + 10 < -2 \][/tex]
2.2. Subtract 10 from both sides to simplify:
[tex]\[ -6x < -12 \][/tex]
2.3. Divide both sides by -6 (again, remember to reverse the inequality sign):
[tex]\[ x > 2 \][/tex]
So, the solution for the second inequality is:
[tex]\[ x > 2 \][/tex]
Combining both solutions, we get:
[tex]\[ x < -99 \quad \text{or} \quad x > 2 \][/tex]
Therefore, the final solution can be written as:
[tex]\[ x < -99 \quad \text{or} \quad x > 2 \][/tex]
[tex]\[ -\frac{1}{3} x - 12 > 21 \quad \text{or} \quad -6x + 10 < -2 \][/tex]
we will tackle each inequality step by step.
Step 1: Solve [tex]\(-\frac{1}{3} x - 12 > 21\)[/tex]
1.1. Start by isolating [tex]\(x\)[/tex]:
[tex]\[ -\frac{1}{3} x - 12 > 21 \][/tex]
1.2. Add 12 to both sides to simplify:
[tex]\[ -\frac{1}{3} x > 33 \][/tex]
1.3. Multiply both sides by -3 (note that multiplying by a negative number reverses the inequality sign):
[tex]\[ x < -99 \][/tex]
So, the solution for the first inequality is:
[tex]\[ x < -99 \][/tex]
Step 2: Solve [tex]\(-6x + 10 < -2\)[/tex]
2.1. Start by isolating [tex]\(x\)[/tex]:
[tex]\[ -6x + 10 < -2 \][/tex]
2.2. Subtract 10 from both sides to simplify:
[tex]\[ -6x < -12 \][/tex]
2.3. Divide both sides by -6 (again, remember to reverse the inequality sign):
[tex]\[ x > 2 \][/tex]
So, the solution for the second inequality is:
[tex]\[ x > 2 \][/tex]
Combining both solutions, we get:
[tex]\[ x < -99 \quad \text{or} \quad x > 2 \][/tex]
Therefore, the final solution can be written as:
[tex]\[ x < -99 \quad \text{or} \quad x > 2 \][/tex]