Solve the inequality.

[tex]\[
\left|\frac{1}{4} x - \frac{1}{3}\right| \leq \frac{1}{3}
\][/tex]

What is the range of values for [tex]\(x\)[/tex]?



Answer :

To solve the inequality [tex]\(\left|\frac{1}{4}x - \frac{1}{3}\right| \leq \frac{1}{3}\)[/tex], we need to consider the definition of absolute value.

The absolute value inequality [tex]\(|A| \leq B\)[/tex] can be rewritten as [tex]\(-B \leq A \leq B\)[/tex]. Applying this to our problem:

[tex]\[ \left|\frac{1}{4}x - \frac{1}{3}\right| \leq \frac{1}{3} \][/tex]

This translates to:

[tex]\[ -\frac{1}{3} \leq \frac{1}{4}x - \frac{1}{3} \leq \frac{1}{3} \][/tex]

Now we solve these two inequalities separately.

### Solving the left inequality:

[tex]\[ -\frac{1}{3} \leq \frac{1}{4}x - \frac{1}{3} \][/tex]

Add [tex]\(\frac{1}{3}\)[/tex] to both sides:

[tex]\[ -\frac{1}{3} + \frac{1}{3} \leq \frac{1}{4}x \][/tex]

[tex]\[ 0 \leq \frac{1}{4}x \][/tex]

Multiply both sides by 4:

[tex]\[ 0 \leq x \][/tex]

### Solving the right inequality:

[tex]\[ \frac{1}{4}x - \frac{1}{3} \leq \frac{1}{3} \][/tex]

Add [tex]\(\frac{1}{3}\)[/tex] to both sides:

[tex]\[ \frac{1}{4}x - \frac{1}{3} + \frac{1}{3} \leq \frac{1}{3} + \frac{1}{3} \][/tex]

[tex]\[ \frac{1}{4}x \leq \frac{2}{3} \][/tex]

Multiply both sides by 4:

[tex]\[ x \leq \frac{8}{3} \][/tex]

So, the combined result from both inequalities is:

[tex]\[ 0 \leq x \leq \frac{8}{3} \][/tex]

In decimal form, [tex]\(\frac{8}{3}\)[/tex] is approximately [tex]\(2.6667\)[/tex].

Thus, the solution to the inequality [tex]\(\left|\frac{1}{4}x - \frac{1}{3}\right| \leq \frac{1}{3}\)[/tex] is:

[tex]\[ 0 \leq x \leq 2.6667 \][/tex]