Complete the equation describing how [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are related.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
-5 & 17 \\
\hline
-4 & 14 \\
\hline
-3 & 11 \\
\hline
-2 & 8 \\
\hline
-1 & 5 \\
\hline
0 & 2 \\
\hline
\end{tabular}
\][/tex]

[tex]\[ y = [?] x + \][/tex]



Answer :

To determine how [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are related, follow these steps:

1. Understand the Form of the Relationship:
We are looking for a linear relationship of the form:
[tex]\[ y = mx + c \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] is the y-intercept.

2. Calculate the Slope [tex]\( m \)[/tex]:
The slope [tex]\( m \)[/tex] can be determined by observing the change in [tex]\( y \)[/tex] with respect to the change in [tex]\( x \)[/tex]. We can use any two points to calculate this.

Let’s use the points [tex]\( (-5, 17) \)[/tex] and [tex]\( (-4, 14) \)[/tex]:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{14 - 17}{-4 - (-5)} = \frac{-3}{1} = -3 \][/tex]
Thus, the slope [tex]\( m \)[/tex] is [tex]\(-3\)[/tex].

3. Determine the y-Intercept [tex]\( c \)[/tex]:
Use one of the given points and the slope to solve for [tex]\( c \)[/tex]. Let’s use the point [tex]\((-5, 17)\)[/tex]:
[tex]\[ y = mx + c \implies 17 = (-3)(-5) + c \][/tex]
Solving for [tex]\( c \)[/tex]:
[tex]\[ 17 = 15 + c \implies c = 17 - 15 = 2 \][/tex]
Thus, the y-intercept [tex]\( c \)[/tex] is [tex]\( 2 \)[/tex].

4. Formulate the Equation:
Using the obtained values of [tex]\( m \)[/tex] and [tex]\( c \)[/tex], we can write the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ y = -3x + 2 \][/tex]

Therefore, the completed equation is:
[tex]\[ y = -3x + 2 \][/tex]