Answer :
Sure! Let's simplify the expression using the distributive property step-by-step.
We start with the given expression:
[tex]$ -4(-x + 3) $[/tex]
The distributive property tells us that we need to multiply each term inside the parentheses by the factor outside, which in this case is [tex]\(-4\)[/tex]. Let's distribute [tex]\(-4\)[/tex] to each term inside the parentheses:
1. Multiply [tex]\(-4\)[/tex] by [tex]\(-x\)[/tex]:
[tex]$ -4 \cdot (-x) = 4x $[/tex]
2. Multiply [tex]\(-4\)[/tex] by [tex]\(3\)[/tex]:
[tex]$ -4 \cdot 3 = -12 $[/tex]
Now, we combine these results to get the simplified expression:
[tex]$ -4(-x + 3) = 4x - 12 $[/tex]
Thus, using the distributive property, the simplified form of the expression [tex]\(-4(-x + 3)\)[/tex] is:
[tex]$ 4x - 12 $[/tex]
We start with the given expression:
[tex]$ -4(-x + 3) $[/tex]
The distributive property tells us that we need to multiply each term inside the parentheses by the factor outside, which in this case is [tex]\(-4\)[/tex]. Let's distribute [tex]\(-4\)[/tex] to each term inside the parentheses:
1. Multiply [tex]\(-4\)[/tex] by [tex]\(-x\)[/tex]:
[tex]$ -4 \cdot (-x) = 4x $[/tex]
2. Multiply [tex]\(-4\)[/tex] by [tex]\(3\)[/tex]:
[tex]$ -4 \cdot 3 = -12 $[/tex]
Now, we combine these results to get the simplified expression:
[tex]$ -4(-x + 3) = 4x - 12 $[/tex]
Thus, using the distributive property, the simplified form of the expression [tex]\(-4(-x + 3)\)[/tex] is:
[tex]$ 4x - 12 $[/tex]