Use the distributive property to simplify the equation below.

[tex]\[ -4(-x + 3) = [?] \][/tex]
[tex]\[ \square \][/tex]



Answer :

Alright, let's simplify the given equation step-by-step using the distributive property.

The equation given is:
[tex]\[ -4(-x + 3) \][/tex]

We will apply the distributive property, which states that [tex]\( a(b + c) = ab + ac \)[/tex]. In this case, [tex]\( a = -4 \)[/tex], [tex]\( b = -x \)[/tex], and [tex]\( c = 3 \)[/tex].

1. Multiply [tex]\(-4\)[/tex] by [tex]\(-x\)[/tex]:
[tex]\[ -4 \cdot (-x) = 4x \][/tex]

2. Now, multiply [tex]\(-4\)[/tex] by [tex]\(3\)[/tex]:
[tex]\[ -4 \cdot 3 = -12 \][/tex]

3. Combine the results from the two multiplications:
[tex]\[ 4x - 12 \][/tex]

So, the expression [tex]\(-4(-x + 3)\)[/tex] simplifies to:
[tex]\[ 4x - 12 \][/tex]

Therefore, the simplified form of the given equation is:
[tex]\[ 4x - 12 \][/tex]