The quantities [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are proportional.

\begin{tabular}{cc}
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
5.8 & 5.8 \\
7.5 & 7.5 \\
11.2 & 11.2 \\
\end{tabular}

Find the constant of proportionality [tex]\((r)\)[/tex] in the equation [tex]\( y = r x \)[/tex].

[tex]\( r = \square \)[/tex]



Answer :

To find the constant of proportionality [tex]\( r \)[/tex] in the equation [tex]\( y = rx \)[/tex] given that the quantities [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are proportional, we need to follow these steps:

1. Identify the given pairs of values:
[tex]\[ \begin{array}{cc} x & y \\ \hline 5.8 & 5.8 \\ 7.5 & 7.5 \\ 11.2 & 11.2 \\ \end{array} \][/tex]

2. Write the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Since [tex]\( y \)[/tex] is proportional to [tex]\( x \)[/tex], we can express this relationship as:
[tex]\[ y = rx \][/tex]
where [tex]\( r \)[/tex] is the constant of proportionality.

3. Calculate the constant of proportionality [tex]\( r \)[/tex] using any pair of values:
Let's use the first pair [tex]\((5.8, 5.8)\)[/tex]:
[tex]\[ y = rx \implies 5.8 = r \cdot 5.8 \][/tex]
Solve for [tex]\( r \)[/tex] by dividing both sides by 5.8:
[tex]\[ r = \frac{5.8}{5.8} \][/tex]

4. Simplify the expression:
[tex]\[ r = 1.0 \][/tex]

Thus, the constant of proportionality [tex]\( r \)[/tex] is:
[tex]\[ r = 1.0 \][/tex]