Evaluate the expression when [tex]\( x=3 \)[/tex] and [tex]\( y=-3 \)[/tex].

[tex]\[ 2(3x - 2y) - 5y + x = [?] \][/tex]



Answer :

Let's break down the expression step by step:
[tex]\[ 2(3x - 2y) - 5y + x \][/tex]

Given values:
[tex]\[ x = 3 \][/tex]
[tex]\[ y = -3 \][/tex]

1. Calculate [tex]\(3x\)[/tex]:
[tex]\[ 3x = 3 \cdot 3 = 9 \][/tex]

2. Calculate [tex]\( -2y \)[/tex]:
[tex]\[ -2y = -2 \cdot -3 = 6 \][/tex]

3. Add [tex]\(3x\)[/tex] and [tex]\( -2y\)[/tex]:
[tex]\[ 3x - 2y = 9 + 6 = 15 \][/tex]

4. Multiply the result by 2:
[tex]\[ 2(3x - 2y) = 2 \cdot 15 = 30 \][/tex]

5. Calculate [tex]\(-5y\)[/tex]:
[tex]\[ -5y = -5 \cdot -3 = 15 \][/tex]

6. Add [tex]\( 2(3x - 2y) \)[/tex], [tex]\(-5y\)[/tex], and [tex]\( x \)[/tex]:
[tex]\[ 30 + 15 + 3 = 48 \][/tex]

Therefore, the final result of the expression is:
[tex]\[ 48 \][/tex]