MISSED THIS? Watch:

KCV: Determining the Enthalpy of Reaction from Standard Enthalpies of Formation

IWE: [tex]$\Delta H^{\circ}$[/tex] and the Standard Enthalpies of Formation

Read Section 7.9. You can click on the Review link to access the section in your eText.

---

Propane [tex]$\left( \text{C}_3 \text{H}_8 \right)$[/tex] burns according to the following balanced equation:

[tex]$
\text{C}_3 \text{H}_8(g) + 5 \text{O}_2(g) \rightarrow 3 \text{CO}_2(g) + 4 \text{H}_2 \text{O}(g)
$[/tex]

Part A

Calculate [tex]$\Delta H_{\text{rxn}}^{\circ}$[/tex] for this reaction using standard enthalpies of formation. (The standard enthalpy of formation of gaseous propane is [tex]$-103.9 \, \text{kJ/mol}$[/tex].)

Express the enthalpy in kilojoules to four significant figures.

View Available Hint(s)

[tex]$
\Delta H_{\text{rxn}}^{\circ} = -2040 \, \text{kJ}
$[/tex]

Previous Answers:

[tex]$\checkmark$[/tex] Correct

The enthalpy of the reaction is found by subtracting the enthalpies of formation of the reactants (because of decomposition) from the enthalpies of formation of the products. To account for the reaction stoichiometry, the coefficients from the balanced equation are multiplied by the corresponding enthalpies of formation.



Answer :

To calculate the enthalpy change ([tex]\(\Delta H^\circ_\text{rxn}\)[/tex]) for the given combustion reaction:

[tex]\[ \text{C}_3\text{H}_8(g) + 5 \text{O}_2(g) \rightarrow 3 \text{CO}_2(g) + 4 \text{H}_2\text{O}(g) \][/tex]

we need to use the standard enthalpies of formation ([tex]\(\Delta H^\circ_f\)[/tex]) of the reactants and products involved in the reaction. The standard enthalpies of formation are provided as follows:

- [tex]\(\Delta H^\circ_f(\text{C}_3\text{H}_8(g)) = -103.9 \text{ kJ/mol}\)[/tex]
- [tex]\(\Delta H^\circ_f(\text{CO}_2(g)) = -393.5 \text{ kJ/mol}\)[/tex]
- [tex]\(\Delta H^\circ_f(\text{H}_2\text{O}(g)) = -241.8 \text{ kJ/mol}\)[/tex]

Step-by-step solution:

1. Identify the Balanced Chemical Equation:
[tex]\[ \text{C}_3\text{H}_8(g) + 5 \text{O}_2(g) \rightarrow 3 \text{CO}_2(g) + 4 \text{H}_2\text{O}(g) \][/tex]

2. Sum the Standard Enthalpies of Formation for the Products:
[tex]\[ \Delta H^\circ_\text{products} = (3 \cdot \Delta H^\circ_f(\text{CO}_2)) + (4 \cdot \Delta H^\circ_f(\text{H}_2\text{O})) \][/tex]
[tex]\[ \Delta H^\circ_\text{products} = (3 \cdot -393.5 \text{ kJ/mol}) + (4 \cdot -241.8 \text{ kJ/mol}) \][/tex]
[tex]\[ \Delta H^\circ_\text{products} = -1180.5 \text{ kJ/mol} + (-967.2 \text{ kJ/mol}) \][/tex]
[tex]\[ \Delta H^\circ_\text{products} = -2147.7 \text{ kJ} \][/tex]

3. Sum the Standard Enthalpies of Formation for the Reactants:
Since oxygen ([tex]\(\text{O}_2\)[/tex]) is in its elemental form, its enthalpy of formation is zero. Thus, we only need to consider propane ([tex]\(\text{C}_3\text{H}_8\)[/tex]).
[tex]\[ \Delta H^\circ_\text{reactants} = \Delta H^\circ_f(\text{C}_3\text{H}_8) \][/tex]
[tex]\[ \Delta H^\circ_\text{reactants} = -103.9 \text{ kJ} \][/tex]

4. Calculate the Standard Enthalpy Change of the Reaction:
[tex]\[ \Delta H^\circ_\text{rxn} = \Delta H^\circ_\text{products} - \Delta H^\circ_\text{reactants} \][/tex]
[tex]\[ \Delta H^\circ_\text{rxn} = -2147.7 \text{ kJ} - (-103.9 \text{ kJ}) \][/tex]
[tex]\[ \Delta H^\circ_\text{rxn} = -2043.8 \text{ kJ} \][/tex]

Therefore, the enthalpy change for the combustion of propane is:

[tex]\[ \Delta H^\circ_\text{rxn} = -2043.8 \text{ kJ} \][/tex]

Expressed to four significant figures, the enthalpy change for this reaction is [tex]\(-2043.8 \text{ kJ}\)[/tex].