Select the best answer for the question.

Factor [tex]$12y^2 + 5y - 2$[/tex] completely.

A. [tex]$(4y - 1)(3y + 2)$[/tex]
B. [tex][tex]$(6y - 1)(2y + 2)$[/tex][/tex]
C. [tex]$(4y - 2)(3y + 1)$[/tex]
D. [tex]$(4y + 1)(3y - 2)$[/tex]



Answer :

To factor the polynomial [tex]\( 12y^2 + 5y - 2 \)[/tex] completely, we need to find pairs of binomials that when multiplied give us the original polynomial. Let's go through the steps:

1. Identify the Polynomial:
We need to factor [tex]\( 12y^2 + 5y - 2 \)[/tex].

2. Choose the Factoring Method:
We will use trial and error with the provided options to check which set of binomials, when multiplied, gives us the original polynomial.

Let's start with the given options:

Option A: [tex]\((4y - 1)(3y + 2)\)[/tex]

Multiply [tex]\( (4y - 1) \)[/tex] and [tex]\( (3y + 2) \)[/tex]:

[tex]\[ (4y - 1) (3y + 2) = 4y \cdot 3y + 4y \cdot 2 - 1 \cdot 3y - 1 \cdot 2 \][/tex]

[tex]\[ = 12y^2 + 8y - 3y - 2 \][/tex]

[tex]\[ = 12y^2 + 5y - 2 \][/tex]

This matches the polynomial [tex]\( 12y^2 + 5y - 2 \)[/tex].

Clearly, option A is correct.

For completeness, let's briefly check the other options to ensure they do not give us the correct polynomial:

Option B: [tex]\((6y - 1)(2y + 2)\)[/tex]

[tex]\[ (6y - 1)(2y + 2) = 12y^2 + 12y - 2y - 2 \][/tex]

[tex]\[ = 12y^2 + 10y - 2 \][/tex]

This does not match the polynomial [tex]\( 12y^2 + 5y - 2 \)[/tex].

Option C: [tex]\((4y - 2)(3y + 1)\)[/tex]

[tex]\[ (4y - 2)(3y + 1) = 12y^2 + 4y - 6y - 2 \][/tex]

[tex]\[ = 12y^2 - 2y - 2 \][/tex]

This does not match the polynomial [tex]\( 12y^2 + 5y - 2 \)[/tex].

Option D: [tex]\((4y + 1)(3y - 2)\)[/tex]

[tex]\[ (4y + 1)(3y - 2) = 12y^2 - 8y + 3y - 2 \][/tex]

[tex]\[ = 12y^2 - 5y - 2 \][/tex]

This does not match the polynomial [tex]\( 12y^2 + 5y - 2 \)[/tex].

After evaluating all the given options, the correct factorization of [tex]\( 12y^2 + 5y - 2 \)[/tex] is indeed:

[tex]\[ \boxed{(4y - 1)(3y + 2)} \][/tex]