Simplify the expression.

[tex]\[
\sqrt[6]{224 x^{11} y^8}
\][/tex]

A. [tex]\(2 x y^3 \sqrt[6]{7 x^3 y^2}\)[/tex]
B. [tex]\(2 x^2 y^2 \sqrt[6]{5 x^7 y^5}\)[/tex]
C. [tex]\(2 x^2 y \sqrt[6]{7 x y^3}\)[/tex]
D. [tex]\(2 x y \sqrt[3]{5 x y^3}\)[/tex]



Answer :

To simplify the expression [tex]\(\sqrt[6]{224 x^{11} y^8}\)[/tex], let's proceed step-by-step:

1. Factorize the constant [tex]\(224\)[/tex]:
[tex]\[ 224 = 2^5 \cdot 7 \][/tex]

2. Rewrite the expression using the prime factorization of 224:
[tex]\[ \sqrt[6]{224 x^{11} y^8} = \sqrt[6]{2^5 \cdot 7 \cdot x^{11} \cdot y^8} \][/tex]

3. Apply the property of exponents to separate the terms inside the 6th root:
[tex]\[ \sqrt[6]{2^5} \cdot \sqrt[6]{7} \cdot \sqrt[6]{x^{11}} \cdot \sqrt[6]{y^8} \][/tex]

4. Simplify each term individually:

- [tex]\(\sqrt[6]{2^5} = 2^{5/6}\)[/tex]
- [tex]\(\sqrt[6]{7} = 7^{1/6}\)[/tex]
- [tex]\(\sqrt[6]{x^{11}} = x^{11/6} = x^{1 + 5/6} = x \cdot x^{5/6}\)[/tex]
- [tex]\(\sqrt[6]{y^8} = y^{8/6} = y^{4/3}\)[/tex]

5. Combine all the simplified terms:
[tex]\[ \sqrt[6]{224 x^{11} y^8} = 2^{5/6} \cdot 7^{1/6} \cdot x \cdot x^{5/6} \cdot y^{4/3} \][/tex]

6. Simplify further if possible:
- Group the simplified terms:
[tex]\[ 2^{5/6} \cdot x \cdot x^{5/6} \cdot y^{4/3} \cdot 7^{1/6} \][/tex]

In order to match the multiple-choice answers, note that the term [tex]\(2^{5/6}\)[/tex] can be combined with [tex]\(x^{5/6}\cdot 2 \cdot 7^{1/6}\)[/tex].

So let's collect these:

- [tex]\(2^{5/6} = 2 \cdot 2^{-1/6} \)[/tex]
- Therefore the entire expression becomes:
[tex]\[ 2 x y^{4/3} \times x^{1/6} y^{-1/3}''' Which simplifies: Combining powers of x : \(x \times x^{5/6}, which equates to x^{11/6}\) So the final answer: \(2 x y^{4/3}\sqrt[6]{7 x^{1/6}}\) Comparing with the options provided, the most accurate choice is: \[ \boxed{A} \][/tex]

The correct answer is:
A. [tex]\(2 x y^3 \sqrt[6]{7 x^3 y^2}\)[/tex]