Given [tex]$h(x)$[/tex], evaluate [tex]$h(-1)$[/tex].

[tex]\[
\begin{array}{c}
h(x) = 3x^2 - 4x + 1 \\
h(-1) = [?]
\end{array}
\][/tex]



Answer :

To evaluate [tex]\( h(-1) \)[/tex] given the function [tex]\( h(x) = 3x^2 - 4x + 1 \)[/tex], follow these steps:

1. Start by substituting [tex]\(-1\)[/tex] for [tex]\( x \)[/tex] in the function:
[tex]\[ h(-1) = 3(-1)^2 - 4(-1) + 1 \][/tex]

2. Calculate [tex]\((-1)^2\)[/tex]:
[tex]\[ (-1)^2 = 1 \][/tex]

3. Substitute this back into the equation:
[tex]\[ h(-1) = 3 \cdot 1 - 4(-1) + 1 \][/tex]

4. Multiply [tex]\(3\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[ 3 \cdot 1 = 3 \][/tex]

5. Next, calculate [tex]\(-4 \cdot (-1)\)[/tex]:
[tex]\[ -4 \cdot (-1) = 4 \][/tex]

6. Substitute these results back into the equation:
[tex]\[ h(-1) = 3 + 4 + 1 \][/tex]

7. Finally, add the terms together:
[tex]\[ h(-1) = 3 + 4 + 1 = 8 \][/tex]

Therefore, the value of [tex]\( h(-1) \)[/tex] is:
[tex]\[ h(-1) = 8 \][/tex]